The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.
Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreThe current research aims to know the effect of Needham's constructivist model on the achievement of third-year students in the Life Sciences Department in the teaching methods subject. To achieve the research objectives, the experimental method was followed for the experimental and control groups with dimensional measurement of the achievement variable of the teaching methods subject. The research sample included (62) students in the third year of the Life Sciences Department, distributed into two equal groups in the variables (self-assessment of learning methods - chronological age in years - intelligence level - previous information). To measure the level of students' achievement, an achievement test was constructed consisting of (40) te
... Show MoreThe subject of research entitled "The Mechanisms of build up the dramatic construction in the films of the world of nature - National Geographic's films as a model" emerges from the importance of the subject of the dramatic construction and its departure from its classic style due to the evolution of the visual presentation and its instruments and the specificity and emergence of a form of television production represented by the films of the world of nature which began to occupy an important space in the map of television and television channels specialized in this subject, which drove the researcher to study the mechanisms of producing the dramatic construction in this kind of film s. This research came in three chapt
... Show MoreObjective: Develop a deliberate thinking scale for the setting skill in volleyball for second-year female students in the College of Physical Education and Sports Sciences for Woman. Research methodology: The researchers used the experimental approach, employing a two-group approach (pre-test and post-test), to suit the nature of the research. The research community comprised (65) second-year female students from the College of Physical Education and Sports Sciences for Woman at the University of Baghdad for the academic year 2024-2025. The research sample was randomly selected, with (15) students in Section A, the experimental group, and (15) students in Section B, the control group. This group represented (46%) of the students. Th
... Show MoreObjective: Develop a deliberate thinking scale for the setting skill in volleyball for second-year female students in the College of Physical Education and Sports Sciences for Woman. Research methodology: The researchers used the experimental approach, employing a two-group approach (pre-test and post-test), to suit the nature of the research. The research community comprised (65) second-year female students from the College of Physical Education and Sports Sciences for Woman at the University of Baghdad for the academic year 2024-2025. The research sample was randomly selected, with (15) students in Section A, the experimental group, and (15) students in Section B, the control group. This group represented (46%) of the students. Th
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
BP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.