The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.
The current research focuses on the extent to which the strategic orientation(entrepreneurial orientation, customer orientation, technology orientation, learning orientation, and investment orientation) affects the learning organization (building common vision, systemic thinking, personal dominance, mental models, team learning)The first hypothesis to test the connection relation between research variables and The second hypothesis was to test the relationship between these variables. In order to ascertain the validity of the hypotheses, the research was based on a questionnaire questionnaire prepared according to a number of In addition to building a fifth sub-variable for the strategic orientation (investment orientation) based
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreSmart systems are the trend for modern organizations and should meet the quality of services that expect to produce. Internet of Everything (IoE) helped smart systems to adopt microcontrollers for improving the performance. Analyzing and controlling data in such a system are critical issues. In this study, a survey of IoE systems conducted to show how to apply a suitable model that meets such system requirements. The analysis of some microcontroller boards is explored based on known features. Factors for applying IoE devices have been defined such as connectivity, power consumption, compatibility, and cost. Different methods have been explained as an overview of applying IoE systems. Further, different approaches for applying IoE technology
... Show MoreThe researcher attempts to examine Barman model in acquiring the historical concepts among fourth-grade students at literary classrooms. To this end, the researcher held the null hypothesis, there is no significant difference between the experimental groups who was taught based on Barman model and the control group that taught based on the traditional method in acquiring the historical concepts on the post-test. To testify the effectiveness of Barman model, the researcher administered a questionnaire included (60) items on bunch of female-students who were selected from al-khamaeal preparatory school in al-hurriyah district in Baghdad. The author utilized different statistical tools to analyze the collected data. &
... Show MoreIn this paper , two method which deal with finding the optimal value for adaptive smoothing constant, are compared .This constant is used in adaptive Single Exponential Smoothing (ASES).
The comparing is between a method uses time domain and another uses frequency domain when the data contain outlier value for autoregressive model of order one AR(1) , or Markov Model, when the time series are stationary and non stationary with deferent samples .
The impact of applying the K-W-L self-scheduling technique on first-year intermediate students' learning of basic volleyball skills, Ayad Ali Hussein*, Israa Fouad Salih
This research presents a method for calculating stress ratio to predict fracture pressure gradient. It also, describes a correlation and list ideas about this correlation. Using the data collected from four wells, which are the deepest in southern Iraqi oil fields (3000 to 6000) m and belonged to four oil fields. These wells are passing through the following formations: Y, Su, G, N, Sa, Al, M, Ad, and B. A correlation method was applied to calculate fracture pressure gradient immediately in terms of both overburden and pore pressure gradient with an accurate results. Based on the results of our previous research , the data were used to calculate and plot the effective stresses. Many equations relating horizontal effective stress and vertica
... Show More