The x-ray fluorescence (XRF) of Znpc molecule with (flow of Ar) and Znpc molecule with (grow in N2) showed two peaks at (8.5and 9.5 Kv) referring to orbital transition ) K?-shell & K?-shell) respectively. The study of x-ray diffraction (XRD) where it was observed good growth of the crystal structure as a needle by the sublimation technique with a ?-phase of (monoclinic structure ) . Using Bragg equation the value of the interdistance of the crystalline plane (d-value) were calculated. We noticed good similarity with like once in the American Standards for Testing Material (ASTM) .Powder Diffraction File (PDF) Program was used to ensure the information obtained from (ASTM) . The output of (PDF) was compared with celn program, where the value of angle(2?( , crystal axis (a,b,c) and axial angles (?,?,?) were calculated. The partical grain size of H2PC was between (27-35)nm, while for ZnPC was between (17-50)nm by applying of Schreer equation. The results are in a good agreement with c-size program. The morphology was distinguished by optical microscope of (200X) magnification for a tini-fiber like a (whisker needle type) with blue color, porous nature and short term structure. The diameter of the fiber H2PC and ZnPC were (20 and 16?m) respectively.
At atmospheric pressure and at a frequency of 9.1 kHz, a constructed magnetically stabilized tornado gliding arc discharge (MSGAD) system was utilized in this study to generate a non-thermal plasma with an alternating voltage source from 2,4,6,8 to 10 kV. Argon gas was used to generate the arc plasma with an adjustable flow rate using a flow meter regulator to stabilize the gas flow rate to 2 L/min. A gliding plasma discharge is achieved by a magnetic field for the purpose of a planned investigation. The influence of the magnetically stabilized tornado gliding arc discharge parameters such as magnetic field and applied voltage on microscopic tornado plasma parameters was studied. The electron temperature1was measured using a Boltzmann plot
... Show MoreIntroduction: This study was performed to compare the effect of Fractional CO2 laser or Q switched Nd:YAG laser of surface treatment on the shear bond strength of zirconia-porcelain interface. Methods: Fractional CO2 laser at 30 W, 2 ms, time interval 1 ms, distance between spots 0.3 mm, and number of scans is (4) or Q switched Nd:YAG laser at 30 J/mm2 and 10 Hz were used to assess the shear bond strength of zirconia to porcelain. Pre-sintered zirconia specimens were divided into three groups (n = 10) according to the surface treatment technique used: (a) untreated (Control) group; (b) CO2 group; (c) Nd:YAG group. All samples were then sintered and veneered with porcelain according to the manufacturer’s instructions. Surface morph
... Show MoreIn the recent years, some of the newly constructed asphalt concrete pavements in Baghdad as well as other cities across Iraq showed premature failures with consequential negative impact on both roadway safety and economy. Frequently, load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some poorly drained sections are the main failure types found in those newly constructed road.
In this research, hydrated lime was introduced into asphalt concrete mixtures of wearing course in two methods. The first one was the addition of dry lime on dry aggregate and the second one was the addition of dry lime on saturated surface dry aggregate moisturized by 2.0 to 3.0 percent of wa
... Show MoreAbstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show MoreThe preparation of a new Azo compounds of highly conjugated dimeric and polymeric liquid crystal to achieve the crystalline characteristics Which have structures assigned based on elemental analysis, IR 1HNMR and CHNS-O while mesogenic properties have been set for DSC and hot-stage polarizing optical microscopy. The compounds show enantiotropicnematic phase being displayed. The compounds show photoluminescence properties in the organic solution at room temperature, with the fluorescence band centered around 400 nm.
Background: The surface properties of the titanium alloy plays a significant role in the bond of the dental implant with living bone and modification of the implant surface could enhance osseointegration. This study was aimed to investigate the effect of different durations of heat treatment on the surface properties of titanium alloy for dental implants. Materials and methods: Twenty disks of (Ti-6Al-4V) alloy were prepared. The sample was divided into four test groups to study the effect of different duration of heat treatment to the surface topography; surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy samples were investigated to evaluate the effect of different durations of
... Show MoreThe assessment of data quality from different sources can be considered as a key challenge in supporting effective geospatial data integration and promoting collaboration in mapping projects. This paper presents a methodology for assessing positional and shape quality for authoritative large-scale data, such as Ordnance Survey (OS) UK data and General Directorate for Survey (GDS) Iraq data, and Volunteered Geographic Information (VGI), such as OpenStreetMap (OSM) data, with the intention of assessing possible integration. It is based on the measurement of discrepancies among the datasets, addressing positional accuracy and shape fidelity, using standard procedures and also directional statistics. Line feature comparison has been und
... Show MoreIn this study, the physical, and mechanical properties of low-cost and biocomposites were evaluated. The walnut shell and date palm frond fibers were thermally treated in an oven at a temperature of 70°C and then chemically treated with NaOH and distilled water solution, after these treatments, the biocomposite materials will be thermally treated again at 50°C. This procedure was performed for three types of biocomposite; Walnut shell Fiber Reinforced Polymer (WFRP), Date palm Fiber Reinforced Polymer (DFRP), and Hybrid Fiber Reinforced Polymer (HFRP), whereas the biocomposite sheets consisting of 30% biofibers and 70% unsaturated polyester, the mechanical test specimens were cut by a CNC machine according to ASTM standards. The e
... Show More