In this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of different sizes, while the morphology of Cu2O crystals was not affected. The synthesized Cu2O crystal samples were used as photocatalysts for methyl orange (MO) dye decomposition, as a model molecule, to evaluate the photocatalytic activities. However, under 200 watts of a visible light source, there are four samples with and without graphene-based nanocomposite of Cu2O NPs. The results showed that, compared with roughly spherical, irregular but thick plates, brick and small granule spheres shaped Cu2O nanoparticles provided better activity. The Cu2O sample with irregular but thick platelet-like shapes, having an average particle size of 0.53 µm, exhibited excellent photocatalytic activity (99.08% degradation). In addition, by reducing the size of Cu2O particles and preparing their graphene composition, one can fabricate a sample (Cu2-Cu2Gr) with the highest efficiency which has significantly better photocatalytic activity in comparison to the others. This work represents an innovative strategy for pre-the-case production of nanomaterials with shapes and sizes, that is, Cu2O crystals, with excellent photocatalytic activity through compositing with graphene
Electro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show MoreMesoporous silica (MPS) nanoparticle was prepared as carriers for drug delivery systems by sol–gel method from sodium silicate as inexpensive precursor of silica and Cocamidopropyl betaine (CABP) as template. The silica particles were characterized by SEM, TEM, AFM, XRD, and N2adsorption–desorption isotherms. The results show that the MPS particle in the nanorange (40-80 nm ) with average diameter equal to 62.15 nm has rods particle morphology, specific surface area is 1096.122 m2/g, pore volume 0.900 cm3/g, with average pore diameter 2.902 nm, which can serve as efficient carriers for drugs. The adsorption kinetic of Ciprofloxacin (CIP) drug was studied and the data were analyzed and found to match well with
... Show MoreThe present study discusses the problem based learning in Iraqi classroom. This method aims to involve all learners in collaborative activities and it is learner-centered method. To fulfill the aims and verify the hypothesis which reads as follow” It is hypothesized that there is no statistically significant differences between the achievements of Experimental group and control group”. Thirty learners are selected to be the sample of present study.Mann-Whitney Test for two independent samples is used to analysis the results. The analysis shows that experimental group’s members who are taught according to problem based learning gets higher scores than the control group’s members who are taught according to traditional method. This
... Show MoreHydrogen sulfide removal catalyst was prepared chemically by precipitation of zinc bicarbonate at a controlled pH. The physical and chemical catalyst characterization properties were investigated. The catalyst was tested for its activity in adsorption of H2S using a plant that generates the H2S from naphtha hydrodesulphurization and a unit for the adsorption of H2S. The results comparison between the prepared and commercial catalysts revealed that the chemical method can be used to prepare the catalyst with a very good activity.
It has observed that the hydrogen sulfide removal over zinc oxide catalyst follows first order reaction kinetics with activation energy of 19.26 kJ/mole and enthalpy and e
... Show MoreThis research reviews the aesthetic variables that were founded according to (theatrical rehearsal) as one of the most important pillars on which the theatrical process is based, because of its necessity in developing theatrical art on several levels that helped the theatrical director in organizing his work, and this became clear through the research chapters represented in the first chapter (methodological framework) and the second chapter, which consisted of the first topic (the duality of watching / rehearsal) and the second topic (the applications of theatrical rehearsal in theatrical experiences), all the way to the third chapter (research procedures), which included the analysis of theatrical rehearsals (sharing on life), and the
... Show MoreSeepage through earth dams is one of the most popular causes for earth dam collapse due to internal granule movement and seepage transfer. In earthen dams, the core plays a vital function in decreasing seepage through the dam body and lowering the phreatic line. In this research, an alternative soil to the clay soil used in the dam core has been proposed by conducting multiple experiments to test the permeability of silty and sandy soil with different additives materials. Then the selected sandy soil model was used to represent the dam experimentally, employing a permeability device to measure the amount of water that seeps through the dam's body and to represent the seepage line. A numerical model was adopted using Geo-Studio software i
... Show MoreThis study aims at examining the effectiveness of using the narrative approach in teaching the Interpretation of the Qur'an course in the development of conceptual comprehension among first-grade middle school female students. To achieve the objective of this study, a quantitative quasi-experimental design has been used. The sample consisted of first-grade middle school female students at "the third middle school" in Buraidah city, as this school suits the objective of the study. A test of conceptual understanding has been built by the researchers according to a list of conceptual understating skills at a significance level of α ≤ 0.05. Results have shown that there are statistically significant differences at the level (α ≤ 0,05)
... Show More