In this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of different sizes, while the morphology of Cu2O crystals was not affected. The synthesized Cu2O crystal samples were used as photocatalysts for methyl orange (MO) dye decomposition, as a model molecule, to evaluate the photocatalytic activities. However, under 200 watts of a visible light source, there are four samples with and without graphene-based nanocomposite of Cu2O NPs. The results showed that, compared with roughly spherical, irregular but thick plates, brick and small granule spheres shaped Cu2O nanoparticles provided better activity. The Cu2O sample with irregular but thick platelet-like shapes, having an average particle size of 0.53 µm, exhibited excellent photocatalytic activity (99.08% degradation). In addition, by reducing the size of Cu2O particles and preparing their graphene composition, one can fabricate a sample (Cu2-Cu2Gr) with the highest efficiency which has significantly better photocatalytic activity in comparison to the others. This work represents an innovative strategy for pre-the-case production of nanomaterials with shapes and sizes, that is, Cu2O crystals, with excellent photocatalytic activity through compositing with graphene
Titanium dioxide nanotubes were synthesized by anodizing Ti sheets in the ethylene glycol solution and were covered in Pt nanoparticles onto the surface of TiO2NTs using electrodeposition method from using five derivatives of Mannich base Pt complexes which have been used as precursor of platinum. The mean size, shape, elemental composition of the titanium dioxide nanotubes and platinum deposited on the template were evaluated by different techniques such as field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction pattern (XRD), and energy dispersive X-ray (EDX) technique. From all these analyses, the TiO2NTs prepared and Ptnanoparticles deposited on it were ide
... Show MoreIn this research, we studied the structural and optical properties of In2O3 films which prepared by chemical spray pyrolysis method on the glass substrate heated 400 . The effect of annealing temperature 100 for one hour on theses properties are studied. The result of Xray diffraction showed the prepared films were polycrystalline and orientation was (222) before and after annealing, optical properties study for prepared films by using (UV-VIS-NIR) spectrophotometer in the wave length range (300-1100)nm, We found the transmission increases after annealing to 90%. Sensitivity measurement of In2O3 films for gas (CO) and optical detector showed that after annealing at temperature 100 .
The research aims to study the effect of adding (Li2O) to an alkaline glaze containing (K2O, Na2O). Although all the alkaline oxides have common properties, each oxide has something that distinguishes it. The molecular weight of (Li2O) is two times less than that of (Na2O) and three times that of (K2O). Therefore, it is added in small proportions. In addition, it is a very strong flux, so it is not used alone, but rather replaces a part of other alkaline oxides. It was added to an alkali glass that matured at a temperature of 980CO in proportions (2.0,1.4,1.2,0.8,0.4%) instead of (Na2O), using lithium carbonate (Li2CO3) as an oxide source. The glazes mixtures were applied to a white pottery body, and the samples were fired and cooled acc
... Show MoreThe present study discusses the problem based learning in Iraqi classroom. This method aims to involve all learners in collaborative activities and it is learner-centered method. To fulfill the aims and verify the hypothesis which reads as follow” It is hypothesized that there is no statistically significant differences between the achievements of Experimental group and control group”. Thirty learners are selected to be the sample of present study.Mann-Whitney Test for two independent samples is used to analysis the results. The analysis shows that experimental group’s members who are taught according to problem based learning gets higher scores than the control group’s members who are taught according to traditional method. This
... Show MoreChaotic systems have been proved to be useful and effective for cryptography. Through this work, a new Feistel cipher depend upon chaos systems and Feistel network structure with dynamic secret key size according to the message size have been proposed. Compared with the classical traditional ciphers like Feistel-based structure ciphers, Data Encryption Standards (DES), is the common example of Feistel-based ciphers, the process of confusion and diffusion, will contains the dynamical permutation choice boxes, dynamical substitution choice boxes, which will be generated once and hence, considered static,
While using chaotic maps, in the suggested system, called
This study is the first investigation in Iraq dealing with genotyping of
The Small Indian Mongoose
The purpose of this study was to determine the influence of environmental pH on production of biofilms and virulence genes expression in Pseudomonas aeruginosa.
Among 303 clinical and environmental samples 109 (61 + 48) isolates were identified as clinical and environmental P. aeruginosa isolates, respectively. Clinical samples were obtained from patients in the Al-Yarmouk hospital in Baghdad city, Iraq. Waste water from Al-Yarmouk hospital was used from site before treatment unit to collect environmental samples. The ability of prod
The extraction of Eucalyptus oil from Iraqi Eucalyptus Camadulensis leaves was studded using water distillation methods. The amount of Eucalyptus oil has been determined in a variety of extraction temperature and agitation speed. The effect of water to Eucalyptus leaves (solvent to solid) ratio and particle size of Eucalyptus leaves has been studied in order to evaluate the amount of Eucalyptus oil. The optimum experimental condition for the Eucalyptus oil extraction was established as follows: 100˚C extraction temperature, 200 rpm agitation speed; 0.5 cm leave particle size and 6:1 ml: g amount of water to eucalyptus leaves Ratio.