The paper aims at initiating and exploring the concept of extended metric known as the Strong Altering JS-metric, a stronger version of the Altering JS-metric. The interrelation of Strong Altering JS-metric with the b-metric and dislocated metric has been analyzed and some examples have been provided. Certain theorems on fixed points for expansive self-mappings in the setting of complete Strong Altering JS-metric space have also been discussed.
The linear non-polynomial spline is used here to solve the fractional partial differential equation (FPDE). The fractional derivatives are described in the Caputo sense. The tensor products are given for extending the one-dimensional linear non-polynomial spline to a two-dimensional spline to solve the heat equation. In this paper, the convergence theorem of the method used to the exact solution is proved and the numerical examples show the validity of the method. All computations are implemented by Mathcad15.
Fundamentalist detective
On matters of consensus
Of Khala book complete the teacher benefits of Muslim
Judge Ayaz
(May God have mercy on him)
Gas and downhole water sink assisted gravity drainage (GDWS-AGD) is a promising gas-based enhanced oil recovery (EOR) process applicable for reservoirs associated with infinite aquifers. However, it can be costly to implement because it typically involves the drilling of multiple vertical gas-injection wells. The drilling and well-completion costs can be substantially reduced by using additional completions for gas injection in the oil production wells through the annulus positioned at the top of the reservoir. Multi-completion-GDWS-AGD (MC-GDWS-AGD) can be configured to include separate completions for gas injection, oil, and water production in individual wells. This study simulates
We study in this paper the composition operator of induced by the function ?(z)=sz+t where , and We characterize the normal composition operator C? on Hardy space H2 and other related classes of operators. In addition to that we study the essential normality of C? and give some other partial results which are new to the best of our knowledge.
The problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline
... Show MoreThe multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).
... Show MoreThroughout this paper we study the properties of the composition operator
C
p1 o
p2 o…o
pn induced by the composition of finite numbers of special
automorphisms of U,
pi (z) i
i
p z
1 p z
Such that pi U, i 1, 2, …, n, and discuss the relation between the product of
finite numbers of automorphic composition operators on Hardy space H2 and some
classes of operators.