The paper aims at initiating and exploring the concept of extended metric known as the Strong Altering JS-metric, a stronger version of the Altering JS-metric. The interrelation of Strong Altering JS-metric with the b-metric and dislocated metric has been analyzed and some examples have been provided. Certain theorems on fixed points for expansive self-mappings in the setting of complete Strong Altering JS-metric space have also been discussed.
The research aim was to observe the distribution pattern of
Let be an n-Banach space, M be a nonempty closed convex subset of , and S:M→M be a mapping that belongs to the class mapping. The purpose of this paper is to study the stability and data dependence results of a Mann iteration scheme on n-Banach space
In this essay, we utilize m - space to specify mX-N-connected, mX-N-hyper connected and mX-N-locally connected spaces and some functions by exploiting the intelligible mX-N-open set. Some instances and outcomes have been granted to boost our tasks.
The main goal of this paper is to study applications of the fractional calculus techniques for a certain subclass of multivalent analytic functions on Hilbert Space. Also, we obtain the coefficient estimates, extreme points, convex combination and hadamard product.
A cap of size and degree in a projective space, (briefly; (k,r)-cap) is a set of points with the property that each line in the space meet it in at most points. The aim of this research is to extend the size and degree of complete caps and incomplete caps, (k, r)-caps of degree r<12 in the finite projective space of dimension three over the finite field of order eleven, which already exist and founded by the action of subgroups of the general linear group over the finite field of order eleven and degree four, to (k+i,r+1) -complete caps. These caps have been classified by giving the t_i-distribution and -distribution. The Gap programming has been used to execute the designed algorit
... Show More