This paper deals with a new Henstock-Kurzweil integral in Banach Space with Bilinear triple n-tuple and integrator function Ψ which depends on multiple points in partition. Finally, exhibit standard results of Generalized Henstock - Kurzweil integral in the theory of integration.
Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show MoreThe two quality management concepts of benchmarking and poor quality cost measurement have been developed completely separate from each other and without any interaction between them. Both have also experienced some shortcomings that to some extent has limited their use and results. This paper explores these shortcomings and demonstrates how benchmarking and poor quality cost measurement in some ways is similar and in other ways complement each others’ weaknesses. An integrated framework that combines the two concepts into a powerful approach for assisting an organization’s quality management work is presented. Different points of intersection between the two concepts in this integrated framework are discussed, and it is demo
... Show MoreThe flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha
... Show MoreThe research study and analysis of the integration of marketing communications and their impact on the marketing performance of a number of telecom companies, as included in the research problem to know the role of marketing communications community in achieving sales and market share, profitability and customer satisfaction. The importance of research begins to be the right choice for the elements of marketing communications, lead to savings in time, effort and money and create a more idea about the effectiveness of the application of the concept of integration. The research to determine the role of marketing communications in promoting the integration of the marketing performance of companies in the field of sales and marke
... Show MoreIn this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.
Strong and ∆-convergence for a two-step iteration process utilizing asymptotically nonexpansive and total asymptotically nonexpansive noneslf mappings in the CAT(0) spaces have been studied. As well, several strong convergence theorems under semi-compact and condition (M) have been proved. Our results improve and extend numerous familiar results from the existing literature.
In this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.