Let be a non-trivial simple graph. A dominating set in a graph is a set of vertices such that every vertex not in the set is adjacent to at least one vertex in the set. A subset is a minimum neighborhood dominating set if is a dominating set and if for every holds. The minimum cardinality of the minimum neighborhood dominating set of a graph is called as minimum neighborhood dominating number and it is denoted by . A minimum neighborhood dominating set is a dominating set where the intersection of the neighborhoods of all vertices in the set is as small as possible, (i.e., ). The minimum neighborhood dominating number, denoted by , is the minimum cardinality of a minimum neighborhood dominating set. In other words, it is the smallest number of vertices needed to form a minimum neighborhood-dominating set. The concept of minimum neighborhood dominating set is related to the study of the structure and properties of graphs and is used in various fields such as computer science, operations research, and network design. A minimum neighborhood dominating set is also useful in the study of graph theory and has applications in areas such as network design and control theory. This concept is a variation of the traditional dominating set problem and adds an extra constraint on the intersection of the neighborhoods of the vertices in the set. It is also an NP-hard problem. The main aim of this paper is to study the minimum neighborhood domination number of the split graph of some of the graphs.
The dose rate for bremsstrahlung radiation from beta particles with energy (1.710) MeV and (2.28) MeV which comes from (32P and 90Y) beta source respectively have been calculated through six materials (polyethylene, wood, aluminum, iron, tungsten and lead) for first shielding material with thickness (x=1) mm which are putting between beta sources and second shield (polyethylene, aluminum and lead) with thickness (1, 2 &4) mm have been calculated. The distance between beta source and second shield is constant (D=1) cm. This dose rate was found by program called Rad Pro Calculator (version 3.26). The results of dose rate of beta particles were plotted as a function to the atomic number (Z) for first shield materials for each
... Show MoreDifferent cooking conditions were examined for aluminum content in food cooked while wrapped with aluminum foil. The influence of each anticipated factor (the acidity of the cooking medium, type of acids normally used in cuisines namely acetic and tartaric acids, various cooking temperatures, influence of the presence of sodium chloride salt, the effect of cooking oil, and the length of time of cooking) was studied thoroughly as a function of aluminum degraded out of the aluminum foils to the medium. The experimental samples were digested with nitric acid upon fulfillment of examining each factor separately before quantifying aluminum with the sensitive technique of atomic absorption spectroscopy. The outcomes of the study have shown that t
... Show MoreIn this work, the effects of solvent properties on the characteristics of absorption and fluorescence for two laser dyes was studied. Dyes used in this work include Coumarin 5400 and DCM, while the solvents include ethanol, methanol, acetone, propanol and chloroform. Coumarin 5400 dye shows sharp fluorescence peaks in the green band of visible region while the DCM dye shows relatively wide band within 590-630 nm. Therefore, the selection of any dye for random gain medium applications should be performed after determining the most appropriate solvent as the optimum fluorescence characteristics are obtained.
Aluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add
... Show MoreThe pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o. The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and real and
... Show MoreThe pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o . The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and r
... Show MoreThe aim of the present research is concerned with study the effect of UV radiation on the optical properties at wavelengths 254, 365 nm of pure PC and anthracene doping PC films prepared using the cast method for different doping ratio 10-60 mL. Films of pure PC and anthracene doping PC were aged under UV radiation for periods of up to 360 h. It found that the effect of UV radiation at wavelength 254 nm on the optical properties is great than the effect of UV radiation at wavelength 365 nm. Also, it found that the optical energy gap of pure PC and anthracene doping PC films is stable against radiation.