Preferred Language
Articles
/
bsj-8394
Traveling Wave Solutions of Fractional Differential Equations Arising in Warm Plasma
...Show More Authors

This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Oscillation of Nonlinear First Order Neutral Differential Equations
...Show More Authors

In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 07 2008
Journal Name
Baghdad Science Journal
Oscillation of Nonlinear Differential Equations with Advanced Arguments
...Show More Authors

This paper is concerned with the oscillation of all solutions of the n-th order delay differential equation . The necessary and sufficient conditions for oscillatory solutions are obtained and other conditions for nonoscillatory solution to converge to zero are established.

View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
New Spectral Range Generations from Laser-plasma Interaction
...Show More Authors

            High-intensity laser-produced plasma has been extensively investigated in many studies. In this demonstration, a new spectral range was observed in the resulted spectra from the laser-plasma interaction, which opens up new discussions for new light source generation. Moreover, the characterizations of plasma have been improved through the interaction process of laser-plasma. Three types of laser were incorporated in the measurements, continuous-wave CW He-Ne laser, CW diode green laser, pulse Nd: YAG laser. As the plasma system, DC glow discharge plasma under the vacuum chamber was considered in this research. The plasma spectral peaks were evaluated, where they refer to Nitrogen gas. The results indicated that the

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
An Analytic Solution for Riccati Matrix Delay Differential Equation using Coupled Homotopy-Adomian Approach
...Show More Authors

An efficient modification and a novel technique combining the homotopy concept with  Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced  in this paper  . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.

View Publication Preview PDF
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Approximate Solutions for Nonlinear Blasius Equations
...Show More Authors

The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta meth

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 11 2019
Journal Name
Aip Conference Proceedings
Estimation of shock wave position in plasma plume using Sedov-Taylor model
...Show More Authors

In this work, radius of shock wave of plasma plume (R) and speed of plasma (U) have been calculated theoretically using Matlab program.

Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Analytic Solutions For Integro-Differential Inequalities Using Modified Adomian Decomposition Method
...Show More Authors

   This paper applies the Modified Adomian Decomposition Method (MADM) for solving Integro-Differential Inequality, this method  is one of effective to construct analytic approximate solutions for linear and nonlinear integro-differential inequalities without solving many integrals and transformed or discretization. Several examples are presented, the analytic results show that this method is a promising and powerful for solving these problems.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
The Influence of Magnetohydrodynamic Flow and Slip Condition on Generalized Burgers’ Fluid with Fractional Derivative
...Show More Authors

This paper investigates the effect of magnetohydrodynamic (MHD) of an incompressible generalized burgers’ fluid including a gradient constant pressure and an exponentially accelerate plate where no slip hypothesis between the burgers’ fluid and an exponential plate is no longer valid. The constitutive relationship can establish of the fluid model process by fractional calculus, by using Laplace and Finite Fourier sine transforms. We obtain a solution for shear stress and velocity distribution. Furthermore, 3D figures are drawn to exhibit the effect of magneto hydrodynamic and different parameters for the velocity distribution.

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A parallel Numerical Algorithm For Solving Some Fractional Integral Equations
...Show More Authors

In this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
The Necessary and Sufficient Optimality Conditions for a System of FOCPs with Caputo–Katugampola Derivatives
...Show More Authors

The necessary optimality conditions with Lagrange multipliers  are studied and derived for a new class that includes the system of CaputoKatugampola fractional derivatives to the optimal control problems with considering the end time free. The formula for the integral by parts has been proven for the left CaputoKatugampola fractional derivative that contributes to the finding and deriving the necessary optimality conditions. Also, three special cases are obtained, including the study of the necessary optimality conditions when both the final time  and the final state  are fixed. According to convexity assumptions prove that necessary optimality conditions are sufficient optimality conditions.

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref