This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.
In this paper, we have investigated some of the most recent energy efficient routing protocols for wireless body area networks. This technology has seen advancements in recent times where wireless sensors are injected in the human body to sense and measure body parameters like temperature, heartbeat and glucose level. These tiny wireless sensors gather body data information and send it over a wireless network to the base station. The data measurements are examined by the doctor or physician and the suitable cure is suggested. The whole communication is done through routing protocols in a network environment. Routing protocol consumes energy while helping non-stop communic
... Show MoreThis work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to
In this work, two different laser dye solutions were used to host highly-pure silicon nitride nanoparticles as scattering centers to fabricate random gain media. The laser dye was dissolved in three different solvents (ethanol, methanol and acetone) and the final results were obtained for methanol only. The silicon nitride nanoparticles were synthesized by dc reactive magnetron sputtering technique with average particle size of 35 nm. The random gain medium was made as a solid rod with high spectral efficiency and low production cost. Optical emission with narrow linewidth was detected at 532-534 nm as 9 mg of silicon nitride nanoparticles were added to the 10 -5 M dye solution. The FWHM of 0.3 and 3.52 nm was determined for Rhodamine B and
... Show MoreApparent molar volume, V?, and viscosity B-coefficient of nicotinc acid in water and in aqueous NaCl solutions have been determined from density and viscosity measurements at (293.15, 298.15, 303.15 and 308.15) K. The experimental density data were evaluated by Masson equation, and the derived, apparent molar volume at infinite dilution, Vo?, and the slope Sv, were interpreted in term of solute-solvent and solute- solute interactions. Transfer apparent molar volumes at infinite dilution of nicotinic acid from water to NaCl solutions at various temperatures have been calculated.The viscosity data have been analyzed using Jones-Dole equation, and the derived parameters, Jones-Dolecoefficient, B,and Falkenhagen coefficient,A, have been also in
... Show MoreAbstract
This Research aims for harnessing critical and innovative thinking approaches besides innovative problem solving tools in pursuing continual quality improvement initiatives for the benefit of achieving operations results effectively in water treatment plants in Baghdad Water Authority. Case study has been used in fulfilling this research in the sadr city water treatment plant, which was chosen as a study sample as it facilitates describing and analyzing its current operational situation, collecting and analyzing its own data, in order to get its own desired improvement opportunity be done. Many statistical means and visual thinking promoting methods has been used to fulfill research task.
... Show MoreIn this work, we carried out an experimental study of thedusty
plasma by taking the dust material Fe3O4 with radius of the any grain
0.1μm - 0.5μm. In experiment we use air in the vacuum chamber
system under different low pressure (0.1-1) Torr. The results
illustrated that the present of dust particles in the air plasma did not
effect on Paschen minimum which is 0.5 without dust and with Fe3O4
dusty grains.
The effect of Fe3O4 dust particles on plasma parameters can be
notice in direct current system in glow discharge region. The plasma
parameters which were studied in this work represent plasma
potential, floating potential,electron saturation current, temperatu
This research aims to test the ability of glass waste powder to adsorb cadmium from aqueous solutions. The glass wastes were collected from the Glass Manufacturing Factory in Ramadi. The effect of concentration and reaction time on sorption was tested through a series of laboratory experiments. Four Cd concentrations (20, 40, 60, and 80) as each concentration was tested ten times for 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 min. Solid (glass wastes) to liquid was 2g to 30ml was fixed in each experiment where the total volume of the solution was 30ml. The pH, total dissolved salts and electrical conductivity were measured at 30ºC. The equilibrium concentration was determined at 25 minutes, thereafter it was noted that the sorption
... Show MoreThis paper investigates an effective computational method (ECM) based on the standard polynomials used to solve some nonlinear initial and boundary value problems appeared in engineering and applied sciences. Moreover, the effective computational methods in this paper were improved by suitable orthogonal base functions, especially the Chebyshev, Bernoulli, and Laguerre polynomials, to obtain novel approximate solutions for some nonlinear problems. These base functions enable the nonlinear problem to be effectively converted into a nonlinear algebraic system of equations, which are then solved using Mathematica®12. The improved effective computational methods (I-ECMs) have been implemented to solve three applications involving nonli
... Show More