This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.
The aim of this work is to evaluate the one- electron expectation value from the radial electronic density function D(r1) for different wave function for the 2S state of Be atom . The wave function used were published in 1960,1974and 1993, respectavily. Using Hartree-Fock wave function as a Slater determinant has used the partitioning technique for the analysis open shell system of Be (1s22s2) state, the analyze Be atom for six-pairs electronic wave function , tow of these are for intra-shells (K,L) and the rest for inter-shells(KL) . The results are obtained numerically by using computer programs (Mathcad).
Stress urinary incontinence (SUI) is involuntary urine leakage during activities that increase abdominal pressure such as coughing, sneezing and lifting of heavy weights. This is a very common disorder among women with history of multiple vaginal deliveries with an obstructed labor. SUI is considered one of the most distressing problems, especially for younger women, with severe quality of life implications, it caused by the loss of urethral support, usually as a consequence of the supporting structural muscles in the pelvis.
Objective: To prove and demonstrate the effect of a fractional CO2 micro-ablative laser (10600nm) in intra vaginal therapy for treating SUI and achieve a clinical improvement of t
... Show MoreIn this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.
The majority of real-world problems involve not only finding the optimal solution, but also this solution must satisfy one or more constraints. Differential evolution (DE) algorithm with constraints handling has been proposed to solve one of the most fundamental problems in cellular network design. This proposed method has been applied to solve the radio network planning (RNP) in the forthcoming 5G Long Term Evolution (5G LTE) wireless cellular network, that satisfies both deployment cost and energy savings by reducing the number of deployed micro base stations (BSs) in an area of interest. Practically, this has been implemented using constrained strategy that must guarantee good coverage for the users as well. Three differential evolution
... Show Morein this paper the second order neutral differential equations are incestigated are were we give some new suffucient conditions for all nonoscillatory
In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
The method of operational matrices is based on the Bernoulli and Shifted Legendre polynomials which is used to solve the Falkner-Skan equation. The nonlinear differential equation converting to a system of nonlinear equations is solved using Mathematica®12, and the approximate solutions are obtained. The efficiency of these methods was studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as increases. Moreover, the obtained approximate solutions are compared with the numerical solution obtained by the fourth-order Runge-Kutta method (RK4), which gives a good agreement.
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.