Preferred Language
Articles
/
bsj-8362
AlexNet Convolutional Neural Network Architecture with Cosine and Hamming Similarity/Distance Measures for Fingerprint Biometric Matching

In information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compared to traditional image filtering techniques. This paper aimed to utilize a specific CNN architecture known as AlexNet for the fingerprint-matching task. Using such an architecture, this study has extracted the significant features of the fingerprint image, generated a key based on such a biometric feature of the image, and stored it in a reference database. Then, using Cosine similarity and Hamming Distance measures, the testing fingerprints have been matched with a reference. Using the FVC2002 database, the proposed method showed a False Acceptance Rate (FAR) of 2.09% and a False Rejection Rate (FRR) of 2.81%. Comparing these results against other studies that utilized traditional approaches such as the Fuzzy Vault has demonstrated the efficacy of CNN in terms of fingerprint matching. It is also emphasizing the usefulness of using Cosine similarity and Hamming Distance in terms of matching.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 23 2011
Journal Name
International Journal Of The Physical Sciences
Scopus (16)
Crossref (4)
Scopus Crossref
View Publication
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Modeling of Corrosion Rate Under Two Phase Flow in Horizontal Pipe Using Neural Network

The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , w

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
River Water Salinity Impact on Drinking Water Treatment Plant Performance Using Artificial neural network

The river water salinity is a major concern in many countries, and salinity can be expressed as total dissolved solids. So, the water salinity impact of the river is one of the major factors effects of water quality. Tigris river water salinity increase with streamline and time due to the decrease in the river flow and dam construction from neighboring countries. The major objective of this research to developed salinity model to study the change of salinity and its impact on the Al-Karkh, Sharq Dijla, Al-Karama, Al-Wathba, Al-Dora, and Al-Wihda water treatment plant along Tigris River in Baghdad city using artificial neural network model (ANN). The parameter used in a model built is (Turbidity, Ec, T.s, S.s, and TDS in)

... Show More
Crossref (6)
Crossref
View Publication Preview PDF
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Application of Neural Network Analysis for Seismic Data to Differentiate Reservoir Units of Yamama Formation in Nasiriya Oilfield A Case Study in Southern Iraq

      The EMERGE application from Hampsson-Russell suite programs was used in the present study. It is an interesting domain for seismic attributes that predict some of reservoir three dimensional or two dimensional properties, as well as their combination. The objective of this study is to differentiate reservoir/non reservoir units with well data in the Yamama Formation by using seismic tools. P-impedance volume (density x velocity of P-wave) was used in this research to  perform a three dimensional seismic model on the oilfield of Nasiriya by using post-stack data of  5 wells. The data (training and application) were utilized in the EMERGE analysis for estimating the reservoir properties of P-wave ve

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN) Technique

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Jordanian Journal Of Computers And Information Technology
BEYOND WORDS: HARNESSING SPEECH SOUND FOR SPEAKER AGE AND GENDER DETECTION USING 1D CNN ARCHITECTURE WITH SELF-ATTENTION MECHANISM

Beyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attentio

... Show More
Scopus Crossref
View Publication
Publication Date
Wed Feb 29 2012
Journal Name
Al-khwarizmi Engineering Journal
WLAN Integrated with GPRS Network Securely

In this paper a WLAN network that accesses the Internet through a GPRS network was implemented and tested. The proposed network is managed by the Linux based server. Because of the limited facilities of GPRS such as dynamic IP addressing besides to its limited bandwidth a number of techniques are implemented to overcome these limitations.

      Dynamic Host Configuration Protocol (DHCP) server was added to provide a single central control for all TCP/IP resources. Squid Proxy  was added to provide caching of the redundant accessed Web content to reduce the Internet bandwidth usage and speeding up the client’s download time. Network Address Translation (NAT) service was configured to share one IP ad

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 01 2021
Journal Name
Complexity
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay

... Show More
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Application of Artificial Neural Network for Predicting Iron Concentration in the Location of Al-Wahda Water Treatment Plant in Baghdad City

Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies.  In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 30 2020
Journal Name
Journal Of Planner And Development
Basmaya Residential Complex compatibility with the Iraqi Green Architecture Code

The increase in the Iraqi population put pressure on urban cities as there were no new cities built since the 1980s due to the wars and the economic blockade imposed in 1991 and the deteriorating security situation after 2003, where the population in 2018 reached about forty million people. Iraq also suffered during the past decades from problems and challenges in many respects that affected the local environment, and the constructed buildings had a role in increasing these impacts, so the Ministry of Housing worked to issue the Iraqi Green Architecture Code in 2019 to reduce damage to the environment and use resources more efficiently. And because the constructed buildings were not constructed according to green standards, including Bas

... Show More
View Publication Preview PDF