Cipher security is becoming an important step when transmitting important information through networks. The algorithms of cryptography play major roles in providing security and avoiding hacker attacks. In this work two hybrid cryptosystems have been proposed, that combine a modification of the symmetric cryptosystem Playfair cipher called the modified Playfair cipher and two modifications of the asymmetric cryptosystem RSA called the square of RSA technique and the square RSA with Chinese remainder theorem technique. The proposed hybrid cryptosystems have two layers of encryption and decryption. In the first layer the plaintext is encrypted using modified Playfair to get the cipher text, this cipher text will be encrypted using squared RSA to get the final cipher text. This algorithm achieved higher security to data but suffers from a long computational time. So Chinese remainder theorem has been used in the second hybrid cryptosystem to obtain less encryption and decryption time. The simulation results indicated that using the modified Playfair with the proposed square RSA has improved security. Moreover, using the Chinese remainder theorem achieved less encryption and decryption time in comparison to our first proposed and the standard algorithms.
Unlike fault diagnosis approaches based on the direct analysis of current and voltage signals, this paper proposes a diagnosis of induction motor faults through monitoring the variations in motor's parameters when it is subjected to an open circuit or short circuit faults. These parameters include stator and rotor resistances, self-inductances, and mutual inductance. The genetic algorithm and the trust-region method are used for the estimation process. Simulation results confirm the efficiency of both the genetic algorithm and the trust-region method in estimating the motor parameters; however, better performance in terms of estimation time is obtained when the trust-region method is adopted. The results also show the po
... Show MoreNumerous trace elements, notably metals, are essential for the normal functioning of several biological reactions, especially as enzyme cofactors. Several Trace elements refer to essential micronutrients required in minimal quantities for certain biological functions pertaining to human metabolism, albeit their minimal concentrations in the organism. Nonetheless, our understanding of this topic is considerably restricted, and emerging insights into their metabolic functions necessitate contributions and have implications across various domains, encompassing nutritional chemistry, with a focus on analytical chemistry, biological sciences, medicine, pharmacology, and agricultural sciences.
Numerous trace elements, notably metals, are essential for the normal functioning of several biological reactions, especially as enzyme cofactors. Several Trace elements refer to essential micronutrients required in minimal quantities for certain biological functions pertaining to human metabolism, albeit their minimal concentrations in the organism. Nonetheless, our understanding of this topic is considerably restricted, and emerging insights into their metabolic functions necessitate contributions and have implications across various domains, encompassing nutritional chemistry, with a focus on analytical chemistry, biological sciences, medicine, pharmacology, and agricultural sciences.
Irisin is a myokine that controls energy metabolism by making adipose tissue brown. The present goal in doing this research was to determine how irisin concentration relates to other biochemical markers of disease. Hemodialysis (HD) for chronic kidney failure. The study included 30 individuals with end-stage renal disease on HD and 30 healthy subjects as the control group. The ages of all patients and the control group ranged from (25 to 60) years. The excluded criteria included patients with viral hepatitis and diabetes. Serum irisin concentration and the level of fasting serum glucose (FSG), urea, creatinine (Cr), total protein (TP), albumin (Alb), albumin to creatinine ratio (ACR), total cholesterol (TC), alanine aminotransferase (ALT),
... Show MoreHydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil
... Show MoreThis paper studies the effect of mean wind velocity on tall building. Wind velocity, wind profile and wind pressure have been considered as a deterministic phenomenon. Wind velocity has been modelled as a half-sinusoidal wave. Three exposures have been studied B, C, and D. Wind pressure was evaluated by equation that joined wind pressure with mean wind velocity, air density, and drag coefficient.
Variations of dynamic load factor for building tip displacement and building base shear were studied for different building heights, different mode shapes, different terrain exposures, and different aspect ratios of building plan. SAP software, has been used in modelling and dynamic analysis for all case studies.
... Show MoreThe present study aimed to investigate the possible protective effect of cafestol against doxorubicin-induced chromosomal and DNA damage in rat bone marrow cells. Wistar
Albino rats of both sexes were administered cafestol (5mg/kg body weight once
