Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a CT lung cancer dataset consisting of 1000 images and four different classes. The data augmentation process is applied to prevent overfitting, increase the size of the data, and enhance the training process. Score-level fusion and ensemble learning are also used to get the best performance and solve the low accuracy problem. All models were evaluated using accuracy, precision, recall, and the F1-score. Results: Experiments show the high performance of the ensemble model with 99.44% accuracy, which is better than all of the current state-of-the art methodologies. Conclusion: The current study's findings demonstrate the high accuracy and robustness of the proposed ensemble transfer deep learning using various transfer learning models
Abstract
This study identified the developing of a range of students' geography learning skills and the change in their attitudes toward fieldwork as a consequence of leaning experiences that occurred within a field trip. The sample of the study consisted of (27) students within a special topic course enrolled in Geography Department at Umm Al-Qura University in Saudi Arabia in semester 2, 2018. A range of students' geography learning skills were measured by the skills questionnaire that consisted of 12 geography skills after completing field work. Changes in students' at
... Show MoreThis study aimed to identify the role of school administration in achieving educational and learning goals from the point of view of educational supervisors in the stage of basic education. The descriptive method was adopted. As for the sample size, it has reached (59) educational supervisors. A questionnaire consisting of 29 paragraphs divided into four areas was used. The data were statistically analyzed on the Chi-square test, the percentage, and the mono-variance analysis. The result showed that the school administration contributes to achieving educational goals. It also works to solve problems in democratic ways, and in modern methods, there are differences in the criteria for choosing the headmaster. The study recommended that sch
... Show Moremodel is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales
Desulfurization of a simulated diesel fuel by different adsorbents was studied in a fixed-bed adsorption process operated at ambient temperature and pressure. Three different adsorption beds were used, commercial activated carbon, Cu-Y zeolite, and layered bed of 15wt% activated carbon followed by Cu-Y zeolite.Initially Y-zeolite was prepared from Iraqi rice husk and then impregnated with copper. In general, the adsorbents tested for total sulfur adsorption capacity at break through followed the order Ac/Cu-Y zeolite>Cu-Y zeolite>Ac. The best adsorbent, Ac/Cu-Y zeolite is capable of producing more than 30 cm3 of simulated diesel fuel per gram of adsorbent with a weighted average content of 5 ppm-S, while Cu-Y zeolite producing of
... Show MoreThe aquatic crude extract of Silybum marianum dry grains prepared by melting them in distil water by the method of soak and shake. The effect of Silybum marianum crude extract studied in vitro on three tumor cell line the Hep-2, AMN-3 and RD for 24, 48 and 72 hours of exposure, and one cell line of normal cells REF for 72 hr exposure. The results showed that the prescence of toxic effect of the aquatic crude extract on the cell lines of Hep-2, AMN-3 and RD at 10 and 100 µg/ ml upto the higher concentrations when they exposed to the extract for 48 hr. as compared with the control treatment, and when the exposure period increased to 72 hr. the toxic effect started at low concentrations (5 and 10 µg/ ml) as compared with the control g
... Show MoreBackground: Excision repair cross-complementing group 2 gene (ERCC2) polymorphisms have been linked as being a risk factor for colorectal cancer (CRC) emergence. However, data from several studies are contradictory. To validate genetic biomarkers of the CRC; the impact of the following ERCC2 polymorphism (rs1799793 and rs238406) was examined on CRC susceptibility among sample of Iraqi population. Methods: A total of 126 subjects were enrolled in this case control study; 78 CRC patients and 48 apparently healthy individuals who are age, gender, smoking status and BMI matched. Polymerase chain reaction (PCR) was used for genotyping, followed by sequencing then the association between genetic polymorphisms and CRC risk was investigate
... Show MoreEffective management of advanced cancer requires systemic treatment including small molecules that target unique features of aggressive tumor cells. At the same time, tumors are heterogeneous and current evidence suggests that a subpopulation of tumor cells, called tumor initiating or cancer stem cells, are responsible for metastatic dissemination, tumor relapse and possibly drug resistance. Classical apoptotic drugs are less effective against this critical subpopulation. In the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen
Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show More