Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a CT lung cancer dataset consisting of 1000 images and four different classes. The data augmentation process is applied to prevent overfitting, increase the size of the data, and enhance the training process. Score-level fusion and ensemble learning are also used to get the best performance and solve the low accuracy problem. All models were evaluated using accuracy, precision, recall, and the F1-score. Results: Experiments show the high performance of the ensemble model with 99.44% accuracy, which is better than all of the current state-of-the art methodologies. Conclusion: The current study's findings demonstrate the high accuracy and robustness of the proposed ensemble transfer deep learning using various transfer learning models
Background: Breast cancer (BC) is the most widespread cancer among women worldwide. Its incidence and mortality rates have risen in the previous three decades as a result of changes in risk factor profiles, improved cancer registry, and cancer detection. Objective: The study's goals were to establish if Ki-67 could be used as a potential marker in serum of cancer disease patients as well as their interaction with vascular endothelial growth factor (VEGF) and ES in various stages of breast cancer to assess their function in the progression of BC. Materials and Methods: The levels of Ki-67, VEGF and endostatin (ES) in serum were assessed by commercial enzyme linked immunosorbent assay (ELISA) kits in 60 women diagnosed with breast cancer
... Show MoreThe research aims to identify the psychological and health risks that a child might be exposed to by playing with hazardous toys such as pellet guns. To this end, the researcher has visited Ibn Al-Haytham Eye Hospital in Baghdad, the emergency department to figure out the rate of injuries in Children for the consecutive years (2017-2018) and the first Month of (2019). The psychological risks as a result of disability are represented by the inability to accommodate the surrounding environment well. Additionally, the child experiences a kind of tension, conflict, and going in psychological crises through introversion, isolation, withdrawal tendencies, and poor conformity with himself and the Society.
Abstract
The current research aims to identify the level of E-learning among middle school students, the level of academic passion among middle school students, and the correlation between e-learning and academic passion among middle school students. In order to achieve the objectives of the research, the researcher developed two questionnaires to measure the variables of the study (e-learning and study passion) among students, these two tools were applied to the research sample, which was (380) male and female students in the first and second intermediate classes. The research concluded that there is a relationship between e-learning and academic passion among students.
The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreColorectal cancer (CRC) is the most common gastrointestinal malignancy and one of the top ten common cancers worldwide with approximately 2 million cases. There are multiple risk factors that could lead to CRC emergence; of which are genetic polymorphisms. Excision repair cross-complementing group 2 (ERCC2) gene encodes for ERCC2 enzyme which plays a crucial role in maintaining genomic integrity by removing DNA adducts. Several studies suggested that there could be a link between genetic polymorphisms of ERCC2 gene and the risk of CRC development. Hence the present study aims to validate the relationship between the following ERCC2 single nucleotide polymorphisms (rs13181, rs149943175, rs530662943, and rs1799790) and CRC susceptibility. A t
... Show MoreBackground Radiotherapy is one of the main modalities in the management of cancer along with chemotherapy and surgery. Despite its great benefit it has many side effects on many systems and organs including the skin. Objective To record the frequency, grades and types of acute cutaneous side effect in patients with pelvic tumors treated with radiotherapy, in order to report the risk factors and to find appropriate strategies for prevention and management. Patient and methods. Methods A prospective observational study was carried out in Baghdad Radiation and Nuclear Medicine Centre between August 2020 and August 2021.A total 70 patients were enrolled in this study.All patients had full history and full baseline skin exam and were ass
... Show MoreAdministrative procedures in various organizations produce numerous crucial records and data. These
records and data are also used in other processes like customer relationship management and accounting
operations.It is incredibly challenging to use and extract valuable and meaningful information from these data
and records because they are frequently enormous and continuously growing in size and complexity.Data
mining is the act of sorting through large data sets to find patterns and relationships that might aid in the data
analysis process of resolving business issues. Using data mining techniques, enterprises can forecast future
trends and make better business decisions.The Apriori algorithm has bee
The accession of countries to the World Trade Agreement and the openness of markets to each other without restrictions led to the emergence of the philosophy of "a world without borders and business units without countries", which required adapting the modern business environment to that philosophy, which is considered as objectives for the activities of the units that must be implemented in order to achieve competition. The objective of the units has changed from making profit to meeting the desires of customers, which is what imposed a new role for management accounting as a field of knowledge renewed in it visions of competitiveness between units. Because of the increasing needs for information in light of environmental change
... Show More