Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a CT lung cancer dataset consisting of 1000 images and four different classes. The data augmentation process is applied to prevent overfitting, increase the size of the data, and enhance the training process. Score-level fusion and ensemble learning are also used to get the best performance and solve the low accuracy problem. All models were evaluated using accuracy, precision, recall, and the F1-score. Results: Experiments show the high performance of the ensemble model with 99.44% accuracy, which is better than all of the current state-of-the art methodologies. Conclusion: The current study's findings demonstrate the high accuracy and robustness of the proposed ensemble transfer deep learning using various transfer learning models
Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreThe concept of narration has taken an aesthetic field farther than the primitive human act which was imposed by the necessities of social communication in an ancient historical period. The research addressed the research problem. The importance of the research lies in connecting the concept of narration with the theatre directing elements. The research aims at discovering the narration fields in the theatre directing represented by the perceived videos, audios and motions. The research time limit was (2014). The theoretical framework is divided into three chapters:
The first chapter (the concept of narration in literature and criticism), the second addressed
... Show MoreAbstract Background The aim of this study was to identify differences in oral cancer incidence among sexes, age groups and oral sites over time in Iraqi population. Methods Data was obtained from Iraqi cancer registry, differences and trends were assessed with the Wilcoxon matched-pairs signed-ranks test and Regression test, respectively. Results In Iraq from 2000 to 2008, there were 1787 new cases of oral cancer registered, 1035 in men and 752 in women. Cancer at all oral sites affected men more than women. The Tongue other (ICD-02) is the most frequent site follow by lip (ICD-00). Conclusion The decrease in the percent of oral cancer incidence in Iraq not compatible with the high percent of exposure to the risk factors, Iraqi cancer regis
... Show More
Breast cancer is one of the most common cancers in females. In Iraq there are noticeable elevation in incidence rates and prevalence of advanced stages of breast cancer. Ferritin is intracellular iron storage protein abundant in circulation and its main application in differential diagnosis of anemia.
The level of serum ferritin was found raised in various cancers including breast cancer. The aim of this study was to assess whether the serum ferritin concentration would be altered in Iraqi women with breast cancer and it could be related to progression of disease.
Sixty eight females participated in this study. The mean age of these females was 53.25± 9.52 .The level of serum ferritin was measured in 24
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreThis research is a study of the difficulties of learning the Arabic language that faces Arabic language learners in the Kurdistan Region, by revealing its types and forms, which can be classified into two categories:
The first type has difficulties related to the educational system, the source of which is the Arabic language itself, the Arabic teacher or the learner studying the Arabic language or the educational curriculum, i.e. educational materials, or the educational process, i.e. the method used in teaching.
The second type: general difficulties related to the political aspect, the source of which is the policy of the Kurdistan Regional Government in marginalizing the Arabic language and replacing the forefront of th
... Show MoreAn integrated GIS-VBA (Geographical Information System – Visual Basic for Application), model is developed for selecting an optimum water harvesting dam location among an available locations in a watershed. The proposed model allows quick and precise estimation of an adopted weighted objective function for each selected location. In addition to that for each location, a different dam height is used as a nominee for optimum selection. The VBA model includes an optimization model with a weighted objective function that includes beneficiary items (positive) , such as the available storage , the dam height allowed by the site as an indicator for the potential of hydroelectric power generation , the rainfall rate as a source of water . In a
... Show More