Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a CT lung cancer dataset consisting of 1000 images and four different classes. The data augmentation process is applied to prevent overfitting, increase the size of the data, and enhance the training process. Score-level fusion and ensemble learning are also used to get the best performance and solve the low accuracy problem. All models were evaluated using accuracy, precision, recall, and the F1-score. Results: Experiments show the high performance of the ensemble model with 99.44% accuracy, which is better than all of the current state-of-the art methodologies. Conclusion: The current study's findings demonstrate the high accuracy and robustness of the proposed ensemble transfer deep learning using various transfer learning models
To investigate the activity and role of certain enzyme markers in 30 patients female with breast cancer (non-treated, treated, and treatment with recovered).The serum activity of enzyme tumor markers (ALP, GPT and GOT) of (30) patients with breast cancer, and (7) healthy control subjects by using statistical analysis: There is significant difference higher in activity of serum enzyme tumor markers (ALP, GPT, and GOT) in all patients as compared with healthy control
Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreThe proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreIntroduction: Breast cancer is the most common cancer and the major cause of cancer related deaths among Iraqi women. Due to the relatively late detection of breast cancer, the majority of the patients are still treated by modified radicle mastectomy. Aim: To assess the time lag between diagnosis of breast cancer and mastectomy among Iraqi patients; correlating the findings with other clinicopathological characteristics of the disease. Patients and methods: This retrospective study enrolled 226 Iraqi female patients who were diagnosed with breast cancer. Data were registered on the exact time period between signing the histopathological report and the surgical treatment. Other recorded variables included the age of the patients, their level
... Show MoreIntroduction: Breast cancer is the most common cancer and the major cause of cancer related deaths among Iraqi women. Due to the relatively late detection of breast cancer, the majority of the patients are still treated by modified radicle mastectomy. Aim: To assess the time lag between diagnosis of breast cancer and mastectomy among Iraqi patients; correlating the findings with other clinicopathological characteristics of the disease. Patients and methods: This retrospective study enrolled 226 Iraqi female patients who were diagnosed with breast cancer. Data were registered on the exact time period between signing the histopathological report and the surgical treatment. Other recorded variables included the age of the patients, their level
... Show MoreIn this research, silver nanoparticles (AgNPs) were manufactured using aqueous extract of mushroom Pleurotus ostreatus. Anticancer potential of AgNPs was investigated versus human breast cancer cell line (MCF-7). Cytotoxic response was assessed by MTT assay. AgNPs showed inhibition effect at the following concentrations 12.5, 25, 50, 100 and 200 µg/ml versus MCF-7 cell line, and all treatments had a positive result. The MCF-7 cells were inhibited up to 85.14 % at the concentration 200 μg/ml of AgNPs which reduced cells viability to 14.86%, while 12.5 μg/ml of AgNPs caused 24.23% cells inhibition with reduction of cells viability to 75.77%.
Background: Medical-surgical nurses are responsible of providing competent care to clients with a wide-array of acute and chronic health problems. This challenging task requires arming nurses with advanced competencies of health literacy to effectively educate their clients. However, evidence about medical-surgical nurse’s health literacy-related knowledge and experience is limited. Purposes: This study aimed to determine the level of the health literacy-related knowledge and experience among medical-surgical nurses.Design: A descriptive-cross-sectional study was conducted among a total sample of 177 nurses who were practicing in medical-surgical wards in teaching hospitals in Iraq. A convenience sampling method was used to sele
... Show More