Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a CT lung cancer dataset consisting of 1000 images and four different classes. The data augmentation process is applied to prevent overfitting, increase the size of the data, and enhance the training process. Score-level fusion and ensemble learning are also used to get the best performance and solve the low accuracy problem. All models were evaluated using accuracy, precision, recall, and the F1-score. Results: Experiments show the high performance of the ensemble model with 99.44% accuracy, which is better than all of the current state-of-the art methodologies. Conclusion: The current study's findings demonstrate the high accuracy and robustness of the proposed ensemble transfer deep learning using various transfer learning models
<p>The popularity, great influence and huge importance made wireless indoor localization has a unique touch, as well its wide successful on positioning and tracking systems for both human and assists also contributing to take the lead from outdoor systems in the scope of the recent research works. In this work, we will attempt to provide a survey of the existing indoor positioning solutions and attempt to classify different its techniques and systems. Five typical location predication approaches (triangulation, fingerprinting, proximity, vision analysis and trilateration) are considered here in order to analysis and provide the reader a review of the recent advances in wireless indoor localization techniques and systems to hav
... Show MoreHigh-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThis paper presents a complete design and implementation of a monitoring system for the operation of the three-phase induction motors. This system is built using a personal computer and two types of sensors (current, vibration) to detect some of the mechanical faults that may occur in the motor. The study and examination of several types of faults including (ball bearing and shaft misalignment faults) have been done through the extraction of fault data by using fast Fourier transform (FFT) technique. Results showed that the motor current signature analysis (MCSA) technique, and measurement of vibration technique have high possibility in the detection and diagnosis of most mechanical faults with high accuracy. Subsequently, diagnosi
... Show MoreThe research aims to develop a proposed mechanism for financial reporting on sustainable investment that takes the specificity of these investments.
To achieve this goal, the researcher used (what if scenario) where the future financial statements were prepared for the year 2026, after completion of the sustainable project and operation, as the project requires four years to be completed.
The researcher relied on the results of the researchers collected from various modern sources relevant to the research topic and published on the internet, and the financial data and information obtained to assess the reality of the company's activity and its environmental, social, and economic i
... Show MoreThe efficiency of Nd:YAG laser radiation in removing debris and smear layer from prepared root
canal walls was studied. Fifty-seven human extracted single rooted anterior teeth were divided into three
groups. A group that was not lased is considered as a control group. The remaining teeth were exposed to
different laser parameters regarding laser energy, repetition rate and exposure time. For the case of the set of
parameters of 7 mJ laser energy, the cleaning was maximum at 3 p.p.s. repetition rate for 3 seconds exposure
time for, the coronal, middle and apical thirds. Above and below this energy level, there was an overdose
(melting) or under dose (no effect). Nevertheless for 10mJ laser energy case, the cleaning effi
الناصر، عامر عبد الرزاق عبد المحسن والكبيسي، صلاح الدين عواد كريم. 2018. إمكانية تبني الحوسبة السحابية الهجينة في الجامعات العراقية : دراسة تحليلية باستخدام أنموذج القبول التكنولوجي. مجلة الإدا
Urban planning include the creation of strategies as well as the management of metro regions, municipalities, and cities. In this study, the importance of applications of remote sensing and GIS in urban planning will be studied. The distribution of educational destitution cases in cities will be considered. A study area (Baghdad city) will be adopted, and the spatial analysis of the distribution will be according to population densities. In this study, the focus was on the importance of the sustainable distribution of urban educational institutions and the spatial appropriateness of this distribution according to the study areas and the available information. Distribution maps were pr
The present study aimed to examine the concordance between FISH/CISH techniques for assessment of amplification of her2neu gene in Iraqi breast carcinoma patients. Seventy four (74) Iraqi breast cancer patients were involved at the study from the Histopathology Department at the Central Public Health Laboratory in Bagdad, Iraq. Amplification of HER2neu was detected in (33.8%) by fluorescence in situ hybridization and (13.51%) showed high amplification by chromogenic in situ hybridization and (32.43%) showed low amplification. The results of chromogenic in situ hybridization were significantly correlated with the results of two-color fluorescence in situ hybridization with the same tumors. In addition, the study involved the correlation betw
... Show More