Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a CT lung cancer dataset consisting of 1000 images and four different classes. The data augmentation process is applied to prevent overfitting, increase the size of the data, and enhance the training process. Score-level fusion and ensemble learning are also used to get the best performance and solve the low accuracy problem. All models were evaluated using accuracy, precision, recall, and the F1-score. Results: Experiments show the high performance of the ensemble model with 99.44% accuracy, which is better than all of the current state-of-the art methodologies. Conclusion: The current study's findings demonstrate the high accuracy and robustness of the proposed ensemble transfer deep learning using various transfer learning models
Many carbonate reservoirs in the world show a tilted in originally oil-water contact (OOWC) which requires a special consideration in the selection of the capillary pressure curves and an understanding of reservoir fluids distribution while initializing the reservoir simulation models.
An analytical model for predicting the capillary pressure across the interface that separates two immiscible fluids was derived from reservoir pressure transient analysis. The model reflected the entire interaction between the reservoir-aquifer fluids and rock properties measured under downhole reservoir conditions.
This model retained the natural coupling of oil reservoirs with the aquifer zone and treated them as an explicit-region composite system
The Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units.
This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized por
... Show MoreThe effect of the aqueous extract of fenugreek seeds (Trigonella Foenum Graecum L.), Rhodium complex (?) with formula [RhL2CLH2O].1 1/2 ETOH and palladium (?) [pdl2].2ETOH,where L=2-hydroxy phenyl piperonalidine was studied on two cancer cell lines. The first cell line was intestine cancer of female albino mice (L20B), the second one was Rhabdomysarcomas (RD)cell line in human. The activity of the new complexes and the aqueous extract was compared to the well-known anticancer drug (cis-platin) by utilizing the in vitro system. The cell lines were treated with four concentrations of cis-platin 31.25,62.5,125 and 250 ?g/ml for 72 hour exposure time. The same concentrations were used with extract and the new complexes. This study showed that t
... Show MoreIn this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot
... Show MoreFlexible molecular docking is a computational method of structure-based drug design to evaluate binding interactions between receptor and ligand and identify the ligand conformation within the receptor pocket. Currently, various molecular docking programs are extensively applied; therefore, realizing accuracy and performance of the various docking programs could have a significant value. In this comparative study, the performance and accuracy of three widely used non-commercial docking software (AutoDock Vina, 1-Click Docking, and UCSF DOCK) was evaluated through investigations of the predicted binding affinity and binding conformation of the same set of small molecules (HIV-1 protease inhibitors) and a protein target HIV-1 protease enzy
... Show MoreThe concept of forming the living space in the American strategic thought has an
important position it is regarded as an strategic movement that it supports the American
United States with the huge capabilities in its own concern that enables it to approach of
American administration , we find that of different historical periods it works to establish that
the geopolitical dimension which is accompanied with the ability of American response for
the evens that in its own turn enables the American united states to seize the growing chances
in the global strategic environment This study includes five chapters :
- Chapter one: The idea of living space.
- Chapter two: Geopolitical dimension of living space theory.
-
In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.
Abstract
This research aims to design a multi-objective mathematical model to assess the project quality based on three criteria: time, cost and performance. This model has been applied in one of the major projects formations of the Saad Public Company which enables to completion the project on time at an additional cost that would be within the estimated budget with a satisfactory level of the performance which match with consumer requirements. The problem of research is to ensure that the project is completed with the required quality Is subject to constraints, such as time, cost and performance, so this requires prioritizing multiple goals. The project
... Show MoreThe Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana
... Show MoreOur aim was to investigate the inclusion of sexual and reproductive health and rights (SRHR) topics in medical curricula and the perceived need for, feasibility of, and barriers to teaching SRHR. We distributed a survey with questions on SRHR content, and factors regulating SRHR content, to medical universities worldwide using chain referral. Associations between high SRHR content and independent variables were analyzed using unconditional linear regression or χ2 test. Text data were analyzed by thematic analysis. We collected data from 219 respondents, 143 universities and 54 countries. Clinical SRHR topics such as safe pregnancy and childbirth (95.7%) and contraceptive methods