Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a CT lung cancer dataset consisting of 1000 images and four different classes. The data augmentation process is applied to prevent overfitting, increase the size of the data, and enhance the training process. Score-level fusion and ensemble learning are also used to get the best performance and solve the low accuracy problem. All models were evaluated using accuracy, precision, recall, and the F1-score. Results: Experiments show the high performance of the ensemble model with 99.44% accuracy, which is better than all of the current state-of-the art methodologies. Conclusion: The current study's findings demonstrate the high accuracy and robustness of the proposed ensemble transfer deep learning using various transfer learning models
A new Schiff base [I] was prepared by refluxing Amoxicillin trihydrate and 4-Hydroxy- 3,5-dimethoxybenzaldehyde in aqueous methanol solution using glacial acetic acid as a catalyst. The new 1,3-oxazepine derivative [II] was obtained by Diels- Alder reaction of Schiff base [I] with phthalic anhydride in dry benzene. The reaction of Schiff base [I] with thioglycolic acid in dry benzene led to the formation of thiazolidin-4-one derivative [III]. While the imidazolidin-4-one [IV] derivative was produced by reacting the mentioned Schiff base [I] with glycine and triethylamine in ethanol for 9 hrs. Tetrazole derivative [V] was synthesized by refluxing Schiff base [I] with sodium azide in dimethylformamid DMF. The structure of synthesized compound
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreA new Schiff base [I] was prepared by refluxing Amoxicillin trihydrate and 4-Hydroxy- 3,5-dimethoxybenzaldehyde in aqueous methanol solution using glacial acetic acid as a catalyst. The new 1,3-oxazepine derivative [II] was obtained by Diels- Alder reaction of Schiff base [I] with phthalic anhydride in dry benzene. The reaction of Schiff base [I] with thioglycolic acid in dry benzene led to the formation of thiazolidin-4-one derivative [III]. While the imidazolidin-4-one [IV] derivative was produced by reacting the mentioned Schiff base [I] with glycine and triethylamine in ethanol for 9 hrs. Tetrazole derivative [V] was synthesized by refluxing Schiff base [I] with sodium azide in dimethylformamid DMF. The structure of synthesized compound
... Show MoreThe research is summarized in the construction of a mathematical model using the most common methods in the science of Operations Research, which are the models of transportation and linear programming to find the best solution to the problem of the high cost of hajj in Iraq, and this is done by reaching the optimum number of pilgrims traveling through both land ports and the number Ideal for passengers traveling through airports by Iraqi Airways, instead of relying on the personal experience of the decision-maker in Hajj and Umrah Authority by identifying the best port for pilgrim's travel, which can tolerate right or wrong, has been based on scientific methods of Operations Research, the researcher built two mathematical models
... Show MoreBasic Orientation and search path in determining the impact of creative thinking in cultural intelligence field research on the doctors competence, as is a theme of creative thinking great importance in spite of being a old , but his role at the individual level and / or organizational a sustainable effect toward developing a fact uncommon , any sense that one of the pillars of modernity and provide a unique future, as is the competitive weapon of the organizations in an environment dubbed fundamental change and provide all that is unfamiliar, and in the center of the field of research and objective measurement of creative thinking on doctors specialists at the construction of a state of the preference and
... Show MoreThe right of the patient to know the medical risks surrounding the medical intervention is one of the most prominent rights based on the principle of "physical safety", which has undergone several stages of development until it reached the development of the patient's independence in making medical decision without relying on the doctor, The patient's prior informed consent is informed of his / her medical condition. We will study this development in accordance with the French March 4, 2002 legislation on the rights of patients in the health system, whether it was earlier and later. We will highlight the development of the patient's right to "know the medical risks surrounding medical intervention" The legislation and its comparison with th
... Show MoreObjective(s): To determine the impact of the Electronic Health Information Systems upon medical, medical backing and administrative business fields in Al-Kindy Teaching Hospital and to identify the relationship between such impact and their demographic characteristics of years of employment, place of work, and education. Methodology: A descriptive analytical design is employed through the period of April 25th 2016 to May 28th 2016. A purposive "non- probability" sample of (50) subject is selected. The sample is comprised of (25) medical and medical backing staff and (25) administrative staff who are all