In this paper, Min-Max composition fuzzy relation equation are studied. This study is a generalization of the works of Ohsato and Sekigushi. The conditions for the existence of solutions are studied, then the resolution of equations is discussed.
This paper deals with constructing mixed probability distribution from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are ( .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β) are estimated by three different methods, which are maximum likelihood, and Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.
In this work, a class of stochastically perturbed differential systems with standard Brownian motion of ordinary unperturbed differential system is considered and studied. The necessary conditions for the existence of a unique solution of the stochastic perturbed semi-linear system of differential equations are suggested and supported by concluding remarks. Some theoretical results concerning the mean square exponential stability of the nominal unperturbed deterministic differential system and its equivalent stochastically perturbed system with the deterministic and stochastic process as a random noise have been stated and proved. The proofs of the obtained results are based on using the stochastic quadratic Lyapunov function meth
... Show MoreABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreIn this work, some of numerical methods for solving first order linear Volterra IntegroDifferential Equations are presented. The numerical solution of these equations is obtained by using Open Newton Cotes formula. The Open Newton Cotes formula is applied to find the optimum solution for this equation. The computer program is written in (MATLAB) language (version 6)
This paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.
In this paper, a numerical approximation for a time fractional one-dimensional bioheat equation (transfer paradigm) of temperature distribution in tissues is introduced. It deals with the Caputo fractional derivative with order for time fractional derivative and new mixed nonpolynomial spline for second order of space derivative. We also analyzed the convergence and stability by employing Von Neumann method for the present scheme.
A theoretical study was done in this work for Fatigue , Fatigue Crack Growth (FCG) and stress factor intensity range for steel . It also includes Generalized Paris Equation and the fulfillment of his equation which promises that there is a relation between parameters C and n . Usig Simple Paris Equation through which we concluded the practical values of C and n and compared them with the theoretical values which have been concluded by Generalized Paris Equation . The value of da/dN and ∆K for every material and sample were concluded and compared with the data which was used in
... Show MoreBuzurgan oil field suffers from the phenomenon of asphaltene precipitation. The serious negatives of this phenomenon are the decrease in production caused by clogging of the pores and decrease in permeability and wettability of the reservoir rocks, in addition to the blockages that occur in the pipeline transporting crude oil. The presence of laboratories in the Iraqi oil companies helped to conduct the necessary experiments, such as gas chromatography (GC) test to identify the components of crude oil and the percentages of each component, These laboratory results consider the main elements in deriving a new equation called modified colloidal instability index (MCII) equation based on a well-known global equation called colloidal instabi
... Show MoreBuzurgan oil field suffers from the phenomenon of asphaltene precipitation. The serious negatives of this phenomenon are the decrease in production caused by clogging of the pores and decrease in permeability and wettability of the reservoir rocks, in addition to the blockages that occur in the pipeline transporting crude oil. The presence of laboratories in the Iraqi oil companies helped to conduct the necessary experiments, such as gas chromatography (GC) test to identify the components of crude oil and the percentages of each component, These laboratory results consider the main elements in deriving a new equation called modified colloidal instability index (MCII) equation based on a well-known global equation called colloidal in
... Show More