In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.
The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fourth order by using the Lyapunov-Krasovskii functional approach; we obtain some conditions of instability of solution of such equation.
Among the available chaotic modulation schemes, differential chaos shift keying (DSCK) offers the perfect noise performance. The power consumption of DCSK is high since it sends chaotic signal in both of 1 and 0 transmission, so it does not represent the optimal choice for some applications like indoor wireless sensing where power consumption is a critical issue. In this paper a novel noncoherent chaotic communication scheme called differential chaos on-off keying (DCOOK) is proposed as a solution of this problem. With the proposed scheme, the DCOOK signal have a structure similar to chaos on-off keying (COOK) scheme with improved performance in noisy and multipath channels by introducing the concept of differential coherency used in DCS
... Show MoreRecalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We foun
... Show MoreThe nonlinear refractive index and the nonlinear absorption coefficient of unmodified and functional poly(methyl methacrylate) PMMA films were studied before and after the addition of the filler by the z-scan technique, using a Q-switched Nd:YAG laser at two wavelengths: 532 nm and 1064 nm, and at three input energies (13, 33 and 53) mJ. Both linear and nonlinear refractive indices and absorption coefficients of polymer films were studied by using UV-VIS spectrophotometer. The results show that the creation of functional PMMA from unmodified PMMA will increase the nonlinear optical properties in the functional PMMA/copper matrix more than in the unmodified PMMA/copper matrix. Hence, the functional PMMA appears promising as a useful third
... Show MoreMWCNTs and hybrid nanocomposite ZnO/Se/MWCNTs have been prepared via Solvothermal technique using Parr reactor at the temperature 180°C and SeCl2 as a catalyst. The obtained MWCNTs and ZnO/Se/MWCNTs are investigated using the FE-SEM, XRD, UV-VIS Spectroscopy and Z-Scan. The novelty of this research is studying the nonlinear optical properties for these prepared materials and the results exhibit that the thickness of the deposited film for hybrid nanocomposite ZnO/Se/MWCNTs is increased, which in turn, increase the nonlinear phase shift of the laser beam compared with the MWCNTs.
Abstract:
Taghlib tribe had an important part in the history of the first century of
hijra. She managed to get the best social, economic and political basis in the
Arab- Islamic state. In this basis Taghlib was the best Dhimies in the Islamic
state. This tribe refused to be among the people of the book, and to be from
the people of dhima. That tribe refused to pay the Jizya and Khraj, but
accepted to pay double Sadaqa in stead of Jizya and Khraj, so in that case
many Muslims become angry.
Although their Christianity was naïve and simple, Taghlib hold it until the
end of the third century A.H. Taghlib did so because her people wanted to
keep their good relation with the Byzantine. Taghlib thought that the
The aim of this paper is to present method for solving ordinary differential equations of eighth order with two point boundary conditions. We propose two-point osculatory interpolation to construct polynomial solution.
in this paper sufficient conditions of oscillation of all of nonlinear second order neutral differential eqiation and sifficient conditions for nonoscillatory soloitions to onverage to zero are obtained
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show More