Examining and comparing the image quality of degenerative cervical spine diseases through the application of three MRI sequences; the Two-Dimension T2 Weighed Turbo Spin Echo (2D T2W TSE), the Three-Dimension T2 Weighted Turbo Spin Echo (3D T2W TSE), and the T2 Turbo Field Echo (T2_TFE). Thirty-three patients who were diagnosed as having degenerative cervical spine diseases were involved in this study. Their age range was 40-60 years old. The images were produced via a 1.5 Tesla MRI device using (2D T2W TSE, 3D T2W TSE, and T2_TFE) sequences in the sagittal plane. The image quality was examined by objective and subjective assessments. The MRI image characteristics of the cervical spines (C4-C5, C5-C6, C6-C7) showed significant differences among the three sequences used P˂0.05 with the exception of the contrast P˃ 0.05. For the cervical spines (C4-C5), the minimum CNR was noticed with the T2_TFE sequence. For the cervical spines (C5-C6), the CNR and SNR were higher when they were assessed by the 2D T2W TSE sequence as compared to the other sequences. The same findings were observed with the cervical spines (C6-C7). The subjective assessment of the degenerative cervical spine diseases showed that the T2_TFE sequence is excellent in terms of viewing the central stenosis and foraminal stenosis. The best MRI diagnostic imaging can be obtained using the Turbo Field Echo (T2_TFE) and the Three-Dimension T2 Weighted Turbo Spin Echo (3D T2W TSE) sequences to gain detailed diagnostic information regarding the central stenosis and foraminal stenosis of the cervical spines (C4-C5, C5-C6, C6-C7)
High-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreThe synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.
A steganography hides information within other information, such as file, message, picture, or video. A cryptography is the science of converting the information from a readable form to an unreadable form for unauthorized person. The main problem in the stenographic system is embedding in cover-data without providing information that would facilitate its removal. In this research, a method for embedding data into images is suggested which employs least significant bit Steganography (LSB) and ciphering (RSA algorithm) to protect the data. System security will be enhanced by this collaboration between steganography and cryptography.
This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreThe robot arm is the most popular robotic form used in industry. Thus, it is crucial to make a system programming which could controlled the movement of each part in the industrial robot to make it works properly. One of the simplest models of the robot arm is EDARM ED-7100 which has a controller to control the movement of the robot arm manually. In this study, the robot controller has been redesigned in order to improve this robot's function. The new controller system used AT89S52 microcontroller which has wire connected to the robot hand. A function has been added with this controller to improve the system of controlling and becomes better than the previous system (only manually). The functions of the new system include three mo
... Show MoreIn all process industries, the process variables like flow, pressure, level, concentration
and temperature are the main parameters that need to be controlled in both set point
and load changes.
A control system of propylene glycol production in a non isothermal (CSTR) was
developed in this work where the dynamic and control system based on basic mass
and energy balance were carried out.
Inlet concentration and temperature are the two disturbances, while the inlet
volumetric flow rate and the coolant temperature are the two manipulations. The
objective is to maintain constant temperature and concentration within the CSTR.
A dynamic model for non isothermal CSTR is described by a first order plus dead
time (FO
The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in