Preferred Language
Articles
/
bsj-8214
The Role of Chlorella vulgaris in Reducing Some Pharmaceutical Wastes Toxicity in Clam Pseudodontopsis euphraticus
...Show More Authors

Applications of microalgae in environmental studies have recently increased. Current uses of immobilized microalga Chlorella vulgaris include reducing pharmaceutical substances such as amoxicillin AMX and potassium dichromate K2Cr2O7 on freshwater clam Pseudodontopsis euphraticus as a biotic model. Recent research pointed out a change in biomarkers of oxidative stress in an evaluation of induced toxicity. Where clams were exposed to different concentrations100, 200, and 400 mg/L for 7 days and 20, 30, and 50 mg/L for 5 days of amoxicillin and potassium dichromate, respectively. The results showed that exposure to AMX and K2Cr2O7 led to a significant change in the activity of antioxidant enzymes, with significant increases (p<0.05) in reactive oxygen species (ROS) production. The highest ROS value was 51.05 μg/mg under concentrations of 50 mg/L of K2Cr2O7, and the highest recorded percentage of Superoxide Dismutase SOD, Catalase CAT, Malondialdehyde MDA, and Glutathione Reductase GSH, as: 33.40 U/m, 33.32KU/L, 23.22 μmol/l and 21.30µg/g respectively, in concentrations of 50 mg/L of K2Cr2O7 non-treated. It was observed in this study that potassium dichromate was more effective than amoxicillin in causing toxicity. According to the current study, immobilized C. vulgaris was instrumental in decreasing chemicals toxicity, by relieving oxidative stress on P. euphraticus clam, as it recorded a significant decrease p≤ 0.05 in ROS values and oxidizing enzymes such as Superoxide Dismutase SOD, Catalase CAT, Malondialdehyde MDA, as well as ascorbic acid. AA, total protein and GPX in treated samples.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 17 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Synthesis and Spectral Studies on Cobalt(II), Nickel(II), Copper(II), Palladium(II), Platinum(II, IV), Zinc(II), Cadmium(II) and Mercury(II) Complexes of(1, 2-diaminoethane-N,N'-bis(2- butylidine-3 onedioxime)
...Show More Authors

The synthesis of [1,2-diaminoethane-N,N'-bis(2-butylidine-3- onedioxime)] [II2L] and its cobalt(II), nickel(II), copper(II), palladium(II), platinum(II, IV), zinc(II), cadmium(II) and mercury(II) complexes is reported. The compounds were characterised by elemental analyses, spectroscopic methods [I.R, UV-Vis, ('H NMR. and EI mass for H2L)], molar conductivities, magnetic moments. I.R. spectra show that (H2L) behaves as a neutral or mononegative ligand depending on the nature of the metal ions. The molar conductance of the complexes in (DMSO) is commensurate with their ionic character. On the basis of the above measurements, a square planar geometry is proposed for NOD, Pd(II), and Pt(II) complexes, and an octahedr-al structure with trans

... Show More
View Publication Preview PDF
Publication Date
Sat May 07 2016
Journal Name
International Journal Of Science And Research
Synthesis, Characterization and Antimicrobial Activity Studies of Mixed-1,10-phenanthroline- Mn(II),Co(II), Cu(II), Ni(II) and Hg(II) Complexes with Schiff Base[2,2'-(1Z,1'Z)-(biphenyl-4,4'- diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1- ylidene)diphenol]
...Show More Authors

Abstract: The M(II) complexes [M2(phen)2(L)(H2O)2Cl2] in (2:1:2 (M:L:phen) molar ratio, (where M(II) =Mn(II), Co(II), Cu(II), Ni(II) and Hg(II), phen = 1,10-phenanthroline; L = 2,2'-(1Z,1'Z)-(biphenyl-4,4'-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1- ylidene)diphenol] were synthesized. The mixed complexes have been prepared and characterized using 1H and13C NMR, UV/Visible, FTIR spectra methods and elemental microanalysis, as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: Staphylococcus aurous, Escherichia coli, Bacillussubtilis and Pseudomonasaeroginosa to assess their antimicrobial properties. From this study shows that a

... Show More
Preview PDF