The physical, mechanical, electrical and thermal properties containing (Viscosity, curing, adhesion force, Tensile strength, Lap shear strength, Resistively, Electrical conductivity and flammability) of adhesive material that prepared from Nitrocellulose reinforced with graphite particles and aluminum streat. A comparison is made between the properties of adhesive material with varying percentage of graphite powder (0%, 25%, 30%, 35%, 40%) to find out the effect of reinforcement on the adhesive material. The ability of property an electrical was studied through the measurement of conductivity a function of temperature varying. The results of comparison have clearly shown that the increasing of content of the filler material (graphite weight) after limit ratio determined (32%) in material prepare lead to yielding the (CN) material to concept of granular agglomeration. The mechanical properties decrease when graphite weight ratio increases. Electrical conductivity and flammability increases with graphite weight percentage increases, while the electrical conductivity decreases with increases of temperature. The adherent topography of some physically tested Specimens was studied using optical microscopy.
This study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From
... Show MoreThis study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From
... Show MoreMany complexes of 3,5-dimethyl-1H-pyrazol-1-yl phenyl methanone with Cr(III), Co(II), Ni(II), Cu(II) and Cd(II) were synthesized and characterized by FT-IR, UV/visible spectra, elemental analysis, room temperature magnetic susceptibility and molar conductivity. Cd(II) complex was expected to have tetrahedral structure while all the other complexes were expected to have an octahedral structure.
This work targeted studying organogel as a potential floating system. Organgel has an excellent viscoelastic properties, floating system posses a depot property. Different formulations of 12-hydroxyoctadecanoic acid (HOA) in sesame oil were gelled and selecting F1, F3 and F5 HOA organogels for various examinations: tabletop rheology, optical microscopy, and oscillatory rheology studies. Also, the floating properties studies were conducted at in vitro and in-vivo levels. Lastly, the in-vitro release study using cinnarizine (CN) was to investigate the organogel depot property. Based on the results, the selected concentrations of HOA in sesame oil organogels showed temperature transitions fr
... Show MoreDensity Functional Theory (DFT) calculations were carried out to study the thermal cracking for acenaphthylene molecule to estimate the bond energies for breaking C8b-C5a , C5a-C5 , C5-C4 , and C5-H5 bonds as well as the activation energies. It was found that for C8b-C5a , C5-C4 , and C5-H5 reactions it is often possible to identify one pathway for bond breakage through the singlet or triplet states. The atomic charges , dipole moment and nuclear – nuclear repulsion energy supported the breakage bond .Also, it was found that the activation energy value for C5-H5 bond breakage is lower than that required for C8b-C5a , C5a-C5 , C5-C4 bonds which refer to C5-H5 bond in acenaphthylene molecule are weaker than C8b-C5a , C5a-C5 , C5-C
... Show MoreIraqi calcium bentonite was activated via acidification to study its structural and electrical properties. The elemental analysis of treated bentonite was determined by using X-ray fluorescence while the unit crystal structure was studied through X-ray diffraction showing disappearance of some fundamental reflections due to the treatment processes. The surface morphology, on the other hand, was studied thoroughly by Scanning Electron microscopy SEM and Atomic Force Microscope AFM showing some fragments of montmorillonite sheets. Furthermore, the electrical properties of bentonite were studied including: The dielectric permittivity, conductivity, tangent loss factor, and impedance with range of frequency (0.1-1000 KHz) at different temperatu
... Show MoreThis work introduces a new electrode geometry for making holes with high aspect ratios on AISI 304 using an electrical discharge drilling (EDD) process. In addition to commercially available cylindrical hollow electrodes, an elliptical electrode geometry has been designed, manufactured, and implemented. The principal aim was to improve the removal of debris formed during the erosion process that adversely affects the aspect ratio, dimensional accuracy, and surface integrity. The results were compared and discussed to evaluate the effectiveness of electrode geometry on the machining performance of EDD process with respect to the material removal rate (MRR,) the electrode wear rate (EWR), and the tool wear ratio (TWR). Dimensional features an
... Show MoreIn this paper, thermal properties were performed by using semi-empirical theoretical calculations to study the molecular structure of a nonlinear molecular system, the (S2F2) molecule in the infrared region, by using semi-empirical quantum programs in the (MNDO / PM3) method. This study is under the condition of obtaining the stable structure of the molecule in which the molecule obtains the minimum value of the total energy. The thermodynamic properties were also calculated, including the heat of formation, whose value was (-61.002kcal / mol), the entropy and its value (78.2916 cal / mol.k), as well as the heat capacity (15.9454 cal / mol.k) and the enthalpy (3763.434 cal /mol), Gibbs F
... Show More