The use of silicon carbide is increasing significantly in the fields of research and technology. Topological indices enable data gathering on algebraic graphs and provide a mathematical framework for analyzing the chemical structural characteristics. In this paper, well-known degree-based topological indices are used to analyze the chemical structures of silicon carbides. To evaluate the features of various chemical or non-chemical networks, a variety of topological indices are defined. In this paper, a new concept related to the degree of the graph called "bi-distance" is introduced, which is used to calculate all the additive as well as multiplicative degree-based indices for the isomer of silicon carbide, Si2C3-1[t, h]. The term "bi-distance" is derived from the concepts of degree and distance in such a way that second distance can be used to calculate degree-based topological indices.
In this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.
The research summarizes the knowledge of the dimensions and denotations of T.V advertisement; and its constituents for building it through the semiotic approach of an ad sample represented by the announcement of Zain Kuwait Telecom Company which carries the title "Mr. President" using Roland Barth's approach, starting with the designation, implicit, and linguistic reading to reach the narrative features and their denotations. That makes television advertising as a semiotic and pragmatic discourse in view of the still and motion picture with its efficiency and strength to inform and communicate. And what lies in it of aesthetic, artistic elements; informational and effective power in influencing the recipients by focusing on narratives and a
... Show MoreIn this paper, a least squares group finite element method for solving coupled Burgers' problem in 2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved. The theoretical results show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic
... Show MoreLonger follow-up defense , one of basketball skills that require the team collective action involving active part and consistent to acquire bouncing balls even not be a chance for members of the team striker acquisition rebounding from the target area and bring it back again , which reduces the chances of scoring, and it enables team members defender of the performance of fast attack and score points for being the increase your chances of success.In light of the foregoing, reflected the importance of research in achieving the objective basis of skill tests that require a circumstance similar to the circumstances of the game with the standard operating procedures for the registration, and that the validity judged by consistency between tests
... Show MoreThis paper presents a linear fractional programming problem (LFPP) with rough interval coefficients (RICs) in the objective function. It shows that the LFPP with RICs in the objective function can be converted into a linear programming problem (LPP) with RICs by using the variable transformations. To solve this problem, we will make two LPP with interval coefficients (ICs). Next, those four LPPs can be constructed under these assumptions; the LPPs can be solved by the classical simplex method and used with MS Excel Solver. There is also argumentation about solving this type of linear fractional optimization programming problem. The derived theory can be applied to several numerical examples with its details, but we show only two examples
... Show MoreIn this paper, we introduce a new class of sets, namely , s*g-ï¡-open sets and we show that the family of all s*g-ï¡-open subsets of a topological space ) ,X( ï´ from a topology on X which is finer than ï´ . Also , we study the characterizations and basic properties of s*g-ï¡open sets and s*g-ï¡-closed sets . Moreover, we use these sets to define and study a new class of functions, namely , s*g- ï¡ -continuous functions and s*g- ï¡ -irresolute functions in topological spaces . Some properties of these functions have been studied .
The topic of supra.topological.spaces considered one of the important topics because it is a generalization to topological.spaces. Many researchers have presented generalizations to supra open sets such as supra semi.open and supra pre.open sets and others. In this paper, the concept of δ∼open sets was employed and introduced in to the concept of supra topology and a new type of open set was extracted, which was named S∼δ∼open. Our research entails the utilization of this category of sets to form a new concepts in these spaces, namely S∼δ∼limit points and S∼δ∼derive points, and examining its relationship with S∼open and S∼reg∼open. Based on this class of sets, we have introduced other new concepts such as S∼isolate
... Show MoreThis paper is concerned with introducing and studying the M-space by using the mixed degree systems which are the core concept in this paper. The necessary and sufficient condition for the equivalence of two reflexive M-spaces is super imposed. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are introduced. From an M-space, a unique supratopological space is introduced. Furthermore, the m-continuous (m-open and m-closed) functions are defined and the fundamental theorem of the m-continuity is provided. Finally, the m-homeomorphism is defined and some of its properties are investigated.
The concept of Cech fuzzy soft bi-closure space ( ˇ Cfs bi-csp) ( ˇ U, L1, L2, S) is initiated and studied by the authors in [6]. The notion of pairwise fuzzy soft separated sets in Cfs bi-csp is defined in this study, and various features of ˇ this notion are proved. Then, we introduce and investigate the concept of connectedness in both Cfs bi-csps and its ˇ associated fuzzy soft bitopological spaces utilizing the concept of pairwise fuzzy soft separated sets. Furthermore, the concept of pairwise feebly connected is introduced, and the relationship between pairwise connected and pairwise feebly connected is discussed. Finally, we provide various instances to further explain our findings.
By definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturb
... Show More