With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor sets, resulting in four trained models. The test sets are used to evaluate the trained models using many evaluation metrics (accuracy, TPR, FNR, PPR, FDR). Results of Google Net model indicate the high performance of the designed models with 99.34% and 99.76% accuracies for indoor and outdoor datasets, respectively. For Mobile Net models, the result accuracies are 99.27% and 99.68% for indoor and outdoor sets, respectively. The proposed methodology is compared with similar ones in the field of object recognition and image classification, and the comparative study proves the transcendence of the propsed system.
The image caption is the process of adding an explicit, coherent description to the contents of the image. This is done by using the latest deep learning techniques, which include computer vision and natural language processing, to understand the contents of the image and give it an appropriate caption. Multiple datasets suitable for many applications have been proposed. The biggest challenge for researchers with natural language processing is that the datasets are incompatible with all languages. The researchers worked on translating the most famous English data sets with Google Translate to understand the content of the images in their mother tongue. In this paper, the proposed review aims to enhance the understanding o
... Show MoreThe useful of remote sensing techniques in Environmental Engineering and another science is to save time, Coast and efforts, also to collect more accurate information under monitoring mechanism. In this research a number of statistical models were used for determining the best relationships between each water quality parameter and the mean reflectance values generated for different channels of radiometer operate simulated to the thematic Mappar satellite image. Among these models are the regression models which enable us to as certain and utilize a relation between a variable of interest. Called a dependent variable; and one or more independent variables
In this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm.
Fractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
Gypseous soil is prevalent in arid and semi-arid areas, is from collapsible soil, which contains the mineral gypsum, and has variable properties, including moisture-induced volume changes and solubility. Construction on these soils necessitates meticulous assessment and unique designs due to the possibility of foundation damage from soil collapse. The stability and durability of structures situated on gypseous soils necessitate close collaboration with specialists and careful, methodical preparation. It had not been done to find the pattern of failure in the micromechanical behavior of gypseous sandy soil through particle image velocity (PIV) analysis. This adopted recently in geotech
In this research, an analysis for the standard Hueckel edge detection algorithm behaviour by using three dimensional representations for the edge goodness criterion is presents after applying it on a real high texture satellite image, where the edge goodness criterion is analysis statistically. The Hueckel edge detection algorithm showed a forward exponential relationship between the execution time with the used disk radius. Hueckel restrictions that mentioned in his papers are adopted in this research. A discussion for the resultant edge shape and malformation is presented, since this is the first practical study of applying Hueckel edge detection algorithm on a real high texture image containing ramp edges (satellite image).
Image segmentation can be defined as a cutting or segmenting process of the digital image into many useful points which are called segmentation, that includes image elements contribute with certain attributes different form Pixel that constitute other parts. Two phases were followed in image processing by the researcher in this paper. At the beginning, pre-processing image on images was made before the segmentation process through statistical confidence intervals that can be used for estimate of unknown remarks suggested by Acho & Buenestado in 2018. Then, the second phase includes image segmentation process by using "Bernsen's Thresholding Technique" in the first phase. The researcher drew a conclusion that in case of utilizing
... Show MoreIn this paper, a method for hiding cipher text in an image file is introduced . The
proposed method is to hide the cipher text message in the frequency domain of the image.
This method contained two phases: the first is embedding phase and the second is extraction
phase. In the embedding phase the image is transformed from time domain to frequency
domain using discrete wavelet decomposition technique (Haar). The text message encrypted
using RSA algorithm; then Least Significant Bit (LSB) algorithm used to hide secret message
in high frequency. The proposed method is tested in different images and showed success in
hiding information according to the Peak Signal to Noise Ratio (PSNR) measure of the the
original ima
Secured multimedia data has grown in importance over the last few decades to safeguard multimedia content from unwanted users. Generally speaking, a number of methods have been employed to hide important visual data from eavesdroppers, one of which is chaotic encryption. This review article will examine chaotic encryption methods currently in use, highlighting their benefits and drawbacks in terms of their applicability for picture security.