With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor sets, resulting in four trained models. The test sets are used to evaluate the trained models using many evaluation metrics (accuracy, TPR, FNR, PPR, FDR). Results of Google Net model indicate the high performance of the designed models with 99.34% and 99.76% accuracies for indoor and outdoor datasets, respectively. For Mobile Net models, the result accuracies are 99.27% and 99.68% for indoor and outdoor sets, respectively. The proposed methodology is compared with similar ones in the field of object recognition and image classification, and the comparative study proves the transcendence of the propsed system.
Recently, a new secure steganography algorithm has been proposed, namely, the secure Block Permutation Image Steganography (BPIS) algorithm. The new algorithm consists of five main steps, these are: convert the secret message to a binary sequence, divide the binary sequence into blocks, permute each block using a key-based randomly generated permutation, concatenate the permuted blocks forming a permuted binary sequence, and then utilize a plane-based Least-Significant-Bit (LSB) approach to embed the permuted binary sequence into BMP image file format. The performance of algorithm was given a preliminary evaluation through estimating the PSNR (Peak Signal-to-Noise Ratio) of the stego image for limited number of experiments comprised hiding
... Show MoreFind extract This research aims to find out (after learning strategy cells in the development of critical thinking and reflective thinking at the fifth-grade students in the geographic literary material). And follow researcher Almhnj demo for the purpose of achieving the goals of current research and design on an experimental group and a control with a test group after me and adopted chose researcher sample Find a way Mqsidih students of junior high Kadhimiya Boys of the breeding Baghdad / Karkh II and to verify the effectiveness of the search coined researcher hypotheses following cases: - 1. No statistically significant between the mean scores of the experimental group and the students taught her students that strategy differences (lea
... Show MoreAim of the research
The current research is aimed to know the effect of competitive education strategy at the fifth-grade students in the preparatory Islamic Education .
Search procedures
To achieve the goal of research researcher Qsidia chose a middle channel of the daughters of the breeding Baghdad Rusafa , The research sample has been reached (69) student -Bois Qa (34) in the control group , And ( 35) in the experimental group , Researcher Strategy competitive education that was applied to the experimental group were used , the traditional way to the control group .
search result
Search result yielded superiority of the expe
... Show MoreThe study aimed to determine the effect of the flipped learning model in improving the acquisition of the overhand serve skill in volleyball among second-year students at the College of Physical Education and Sport Sciences, University of Baghdad, for the academic year 2024/2025. The study used an experimental design with a control group and pre-post testing, on a purposive sample consisting of 12 students. The model relied on watching short videos before class via the SGS application, and practical application in class at a rate of three sessions per week. The results showed a significant improvement in performance, as the calculated value (t = 5.356) exceeded the tabulated value (2.042) at a significance level of 0.05. The percentage of s
... Show More