Radiation treatment has long been the conventional approach for treating nasopharyngeal cancer (NPC) tumors due to its anatomic features, biological characteristics, and radiosensitivity. The most common treatment for nasopharyngeal carcinoma is radiotherapy. This study aimed to assess the better quality of radiotherapy treatment techniques using intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). The VMAT and IMRT are comparative techniques. Forty patients with nasopharyngeal carcinoma and forwarded for radiotherapy were treated with both advanced techniques, IMRT and VMAT, using eclipse software from Varian. The x-ray energy was set at 6 MV. The total prescribed dose was 70 Gy. The results show that the VMAT had better tumor coverage than the IMRT. Regarding quality indices, the IMRT shows a better dose homogeneity, while the VMAT gives better gradient and conformity indices. The best technique that reduces the dose to the right eye, optic chiasm, and thyroid is VMAT, while the esophagus and spinal cord are protected better with IMRT. The VMAT shows a special effect for IMRT for treating nasopharyngeal carcinoma.
In this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.
The aim of this paper is to estimate a nonlinear regression function of the Export of the crude oil Saudi (in Million Barrels) as a function of the number of discovered fields.
Through studying the behavior of the data we show that its behavior was not followed a linear pattern or can put it in a known form so far there was no possibility to see a general trend resulting from such exports.
We use different nonlinear estimators to estimate a regression function, Local linear estimator, Semi-parametric as well as an artificial neural network estimator (ANN).
The results proved that the (ANN) estimator is the best nonlinear estimator am
... Show More