This study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5NPs were determined using the (EDX) pattern, Atomic force microscopy AFM. The adsorption experiment was successfully conducted on metal ions M (II), such as Co, Ni, and Cu. The results proved removal simultaneously from water using V2O5NPs based on surface shape on the affinity of three metal ions. The adsorption rate of Ni(II) is the highest one in the time scale and conditions of our experiment at all surfaces, while Co(II) and Cu(II) ions are close in magnitude. The removal efficiencies of mixed (M+2 = Co, Ni, and Cu) ions with λmax for Co, Ni, and Cu ions are 510,425 and 814 nm 56.66%, 77.00%, and 27.23%, respectively. The Antimicrobial activity of V2O5NPs in three concentrations, 25%, 50%, and 75%, was tested against Escherichia coli, Staphylococcus aureus, and Candida albicans fungus. The results of the inhibition of vanadium oxide nanoparticles against positive and negative bacteria were compared with the standard drug Amoxicillin and the results of fungus inhibition with the standard drug Metronidazole. It was found that nano-oxide is more effective at 75% concentration.
new, simple and fast solid-phase extraction method for separation and preconcentration of trace theophylline in aqueous solutions was developed using magnetite nanoparticles (MIONPs) coated with aluminium oxide (AMIONPs) and modified with palmitate (P) as an extractor (P@AMIONPs). It has shown that the developed method has a fast absorbent rate of the theophylline at room temperature. The parameters that affect the absorbent of theophylline in the aqueous solutions have been investigated such as the amount of magnetite nanoparticle, pH, standing time and the volume, concentration of desorption solution. The linear range, limit of quantification (LOQ) and limit of detection (LOD) for the determination of theophylline were 0.05-2.450 μg mL-
... Show MoreThis work is focused on studying the effect of liquid layer level (height above a target material) on zinc oxide nanoparticles (ZnO and ZnO2) production using liquid-phase pulsed laser ablation (LP-PLA) technique. A plate of Zn metal inside different heights of an aqueous environment of cetyl trimethyl ammonium bromide (CTAB) with molarity (10-3 M) was irradiated with femtosecond pulses. The effect of liquid layer height on the optical properties and structure of ZnO was studied and characterized through UV-visible absorption test at three peaks at 213 nm, 216 nm and 218 nm for three liquid heights 4, 6 and 8 mm respectively. The obtained results of UV–visible spectra test show a blue shift accomp
... Show MoreThe present research included synthesis of silver nanoparticle from(1*10-3,1*10-4 and1*10-5) M aqueous AgNO3 solution through the extract of M.parviflora reducing agent. In the process of synthesizing silver nanoparticles we detected a rapid reduction of silver ions leading to the formation of stable crystalline silver nanoparticles in the solution.
The study involved the effectiveness of Iraqi attapulgite (IQATP) clay as an environmentally friendly material that easily adsorbs brilliant green (BG) dye from water systems and is identified by various complementary methods (e.g., FTIR, SEM‐EDS, XRD, ICP‐OES, pHpzc, and BET), where the result reported that the IQATP specific surface area is 29.15 m2/g. A systematic analysis was selected to evaluate the impact of different effective adsorption performance variables on BG dye decontamination. These variables included IQATP dosage (0.02–0.8 g/L), solution pH (3.05–8.15), contact time (ranging from 2 to 25 min), and initial BG dye concentration from 20 to 80 mg/L. The parameter
... Show MoreTransition metal complexes of Y(III), La(III) and Rh(III) with azo dye 2,4-dimethyl-6- (4-nitro-phenylazo)-phenol derived from 4-nitroaniline and 2,4-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR,UV-Vis and 1HNMR, as well as conductivity measurements. The nature of the complexes formed were studies following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1x10-4- 3x10-4). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiomerty of the complexes has been found to be 1:3 (Metal:ligand). On the basis of Physicochemical data octahedral geometries were as
... Show MoreEffluent from incompetent wastewater treatment plants (WWTPs) contains a great variety of pollutants so support water treatments are essential. The present work studies the removal of phosphate species from aqueous solutions by adsorption on to spherical Calcined Sand -Clay mixture (CSCM) used a natural, local and low-cost adsorbent. Batch experiments were performed to estimate removal efficiency of phosphate. The adsorption experiments were carried out as function of pH, dose of adsorbent, initial concentration, temperature and time of adsorption. The efficient removal was accomplished for pH between 10 and 12. The experimental results also showed that the removal of phosphate by (CSCM) was rapid (the % removal 98.9%, 92%, 90%, 89% in 6
... Show MoreThe aim of this work is the synthesis of new Schiff base derived from PVA and Erythro-ascorbic acid derivative (pentulosono-ɣ-lactone-2,3-enedianisoate) and its metal complexes of biological significance. All synthesized compounds were characterized by Thin layer chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR, 13CNMR and mass spectra. The synthesized Schiff base & its metal complexes were screened for their in vitro antimicrobial activity against five pathogenic bacteria (Escherichia coli, Shigella dysentery,Klebsiellapneumonae,Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast).The biological activity ofall complexes is higher than free Schiff base ligand andf
... Show MoreAbstract: In the present work, the heat transfer of Nano Aluminum Oxide -NAO- has been studied practically to define the appropriate insulation conditions. This study focuses on finding of the amount of heat transfer through a glass substrate that is coated with nanoalumina doped on PMMA matrix. The optical and thermal properties were systematically investigated. The density of heat flow rate, was calculated in the range values (240-260) W/m2 while the optimum values confine between (250-260) W/m2 at temp. (25-35)Co. The results showed that the thermal insulation of the sample was significantly enhanced at temp. (30-50)Co. The simulated net heat transfer through window decreased linearly with incr
... Show MoreAntibiotic resistance is the major growing threat facing the pharmacological treatment of bacterial infections. Therefore, bioprospecting the medicinal plants could provide potential sources for antimicrobial agents. Mimusops, the biggest and widely distributed plant genus of family Sapotaceae, is used in traditional medicines due to its promising pharmacological activities. This study was conducted to elucidate the antimicrobial effect of three unexplored Mimusops spp. (M. kummel, M. laurifolia and M. zeyheri). Furthermore, the mechanisms underlying such antibacterial activity were studied. The Mimusops leaf extracts revealed significant antibacterial activities against the five tested bacter
... Show MoreThe prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volu