This study synthesized nanocomposite photocatalyst materials from a mixture of Cu2O nanoparticles, ZnO nanoparticles, and graphene oxide (GO) through coprecipitation and hydrothermal methods. This study aims to determine the optimum composition of Cu2O/ZnO/GO nanocomposites in degrading methylene blue. The nanocomposite was synthesized in two steps: 1 the synthesis of Cu2O and ZnO nanoparticles through the coprecipitation method and the preparation of GO through the modified Hummer method. 2 The preparation of Cu2O and ZnO nanoparticles mixtures with GO through the hydrothermal method to form Cu2O/ZnO/GO nanocomposites. The adsorption-photocatalysis process of methylene blue was done with UV light from a halogen lamp. The characterization results indicated that the optimum composition was Cu2O/ZnO nanocomposite with a ratio of 1:2 and 10% of GO, which had a specific surface area of 35.874 m2 g-1, a pore radius of 19.073 nm, and a pore volume of 0.092 cm3 g-1, and a diameter crystalline of 31.19 nm. The degradation efficiency of methylene blue under UV light for 120 minutes were 82.0%, 86.0%, 91.4%, and 79.3% using the Cu2O/ZnO nanocomposites with GO of 1%, 3%, 5%, and 10%, respectively. These results indicated that Cu2O/ZnO/GO nanocomposites efficiently degrade methylene blue from textile dye waste.
Using an electrochemical polymerization technique at room temperature, poly nicotine amide (PNA) was produced from the monomer nicotine amide (NA) in aqueous solution. The structure of polymer layer generated on the stainless steel surface (316 L) (working electrode) is investigated by Fourier Transmission Infrared Region (FT-IR). The anti-corrosion activity of polymer coating on the stainless steel (SS 316 L) is investigated by electrochemical polarization in 0.20M solution of HCl at 293-323K. The graphene -modified polymer film-coated SS had greater protection efficiency (PE percent) when compared to Nano ZnO -modified polymer film-coated SS. For the corrosion process of SS 316 L, kinetic and thermo-dynamic parameters of activation are
... Show MoreThe main purpose of the work is to analyse studies of themagnetohydrodynamic “MHD” flow for a fluid of generalized Burgers’ “GB” within an annular pipe submitted under impulsive pressure “IP” gradient. Closed form expressions for the velocity profile, impulsive pressure gradient have been taken by performing the finite Hankel transform “FHT” and Laplace transform “LT” of the successive fraction derivatives. As a result, many figures are planned to exhibit the effects of (different fractional parameters “DFP”, relaxation and retardation times, material parameter for the Burger’s fluid) on the profile of velocity of flows. Furthermore, these figures are compa
Antimicrobial resistance is one of the most significant threats to public health worldwide. As opposed to using traditional antibiotics, which are effective against diseases that are multidrug-resistant, it is vital to concentrate on the most innovative antibacterial compounds. These innate bacterial arsenals under the term «bacteriocins» refer to low-molecularweight, heat-stable, membrane-active, proteolytically degradable, and pore-forming cationic peptides. Due to their ability to attack bacteria, viruses, fungi, and biofilm, bacteriocins appear to be the most promising, currently accessible alternative for addressing the antimicrobial resistance (AMR) problem and minimizing the negative effects of antibiotics on the host’s m
... Show MoreIn this research, the degradation of Dazomet has been studied by using thermal Fenton process and photo-Fenton processes under UV and lights sun. The optimum values of amounts of the Fenton reagents have been determined (0.07g FeSO4 .7H2O, 3.5µl H2O2) at 25 °C and at pH 7 where the degradation percentages of Dazomet were recorded high. It has been found that solar photo Fenton process was more effective in degradation of Dazomet than photo-Fenton under UV-light and thermal Fenton processes, the percentage of degradation of Dazomet by photo-Fenton under sun light are 88% and 100% at 249 nm and 281 nm respectively, while the percentages of degradation for photo-Fenton under UV-light are 87%, 96% and for thermal Fenton are 70% and 66.8% at 2
... Show MoreSolid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on
The study aimed to evaluating the inhibitory activity of apigenin extracted from Salvia officinalis leaves on the growth of L20B cancer cell in vitro, and through two incubation periods; 48 and 72 hours. Accordingly, eight concentrations (1.56, 3.13, 6.25, 12.5, 25.0, 50.0, 100.0 and 200.0 micromol) of apigenin and similar concentrations of vitamin C and carbon tetrachloride (CCl4) were tested. The apigenin revealed its significant inhibitory potentials against the growth of L20B cell line, especially at the low concentrations (1.56, 3.13 and 6.25 micromol) and at 72 incubation period in comparison with vitamin C and CCl4.
Semiconductor-based photocatalytic processes are widely applied as ecofriendly technology for degrading organic pollutants. Establishing photocatalytic heterojunctions with Z-type photocarriers transfer pathways is projected to be a superb strategy to enhance photocatalytic behavior. In this paper, novel and stable (0D/2D) heterojunctions of CoS-embedded boron-doped g-C3N4 (CoS/BCN) with a high rate of charges transfer/separation were assembled for degradation of malachite green dye (MG). The CoS/BCN photocatalyst achieves a photodegradation efficiency of 96.9 % within 1 h of LED illumination, which is 2.5 and 1.4-fold enhancement compared with bare g-C3N4 and BCN, respectively. Besides, the results of species-trapping trials exhibited that
... Show MoreSolar cells thin films were prepared using polyvinyl alcohol (PVA) as a thin film, with extract of natural pigment from local flower. A concentration of 0.1g/ml of polyvinyl alcohol solution in water was prepared for four samples, with various concentrations of plant pigment (0, 15, 25 and 50) % added to each of the four solutions separately for preparing (PVA with low concentrated dye , PVA with medium concentrated dye and PVA with high concentrated dye ) thin films respectively . Ultraviolet absorption regions were obtained by computerized UV-Visible (CECIL 2700). Optical properties including (absorbance, reflectance, absorption coefficient, energy gap and dielectric constant) via UV- Vis were tested, too. Fourier transform infra
... Show MoreThe apoptotic activity of methionine γ- lyase from Pseudomonas putida on cancer cell lines was indicated by measuring the concentration of cytochrome c in the supernatants of cell lines. The result revealed high concentration of cytochrome c in the supernatants of cancer cell lines (RD, AMGM and AMN3) respectively while the concentration of anti-apoptotic protein (Bcl-2) was very low.
Antimicrobial and antiyeast activity of ethanolic and aqueous extract of grape fruit seed (Citrus paradise ; Rutaceaa) was examined against 10 bacterial and 2 yeast strains. The level of the antimicrobial effects was established using an in vitro agar assay and minimum inhibitory concentration (MIC). In general ethanolic extract were more effective on gram positive bacteria than gram negative bacteria and strongest antimicrobial effect against Streptococcus pyogenes and Salmonella entritidis. Other tested bacteria and yeasts were sensitive to extract ranging from 4 to 16 mg/ml and more.