Proteus mirabilis is considered as a third common cause of catheter-associated urinary tract infection, with urease production, the potency of catheter blockage due to the formation of biofilm formation is significantly enhanced. Biofilms are major virulence factors expressed by pathogenic bacteria to resist antibiotics; in this concern the need for providing new alternatives for antibiotics is getting urgent need, This study aimed to explore whether green synthesized zinc oxide nanoparticles (ZnO NPs) can function as an anti-biofilm agent produced by P.mirabilis. Bacterial cells were capable of catalyzing the biosynthesis process by producing reductive enzymes. The nanoparticles were synthesized from cell free extract of P.mirabilis. Characterization of biosynthesized zinc nanoparticles was carried out to determine the chemical and physical properties of the product using AFM, TEM, FESEM, XRD and UV visible spectrometry. The hexagonal structure was confirmed by XRD, Particle size was marked at 84.45 nm by TEM, FESEM was used to confirm the surface morphology. AFM analysis was used to reveal the roughness and distribution of nanoparticles. UV–visible spectra of the synthesized nanoparticles recorded maximum peak at 287 nm. Zinc nanoparticles showed remarkable biofilm inhibitory effect on clinical isolates of multidrug resistant Proteus mirabilis. Strong biofilm producer strains show weak biofilm production After incubation for 24 and 48 hours at 37Co with 32 μg/ml sub -MIC concentration of ZnO nanoparticles. Down regulation changes in LuxS expression using Real time PCR technology were detected after treatment with zink nanoparticles of these isolates compared to untreated isolates. From all findings conducted by this study, zinc oxide nanoparticles can function as anti-bacterial agent in concentration dependent manner.
Due to the energy crisis and the stringent environmental regulations, diesel engines are offering good hope for automotive vehicles. However, a lot of work is needed to reduce the diesel exhaust emissions and give the way for full utilization of the diesel fuel’s excellent characteristics.
A kind of cetane number improver has been proposed and tested to be used with diesel fuel as ameans of reducing exhaust emissions. The addition of (2-ethylhexyl nitrate) was designed to raise fuel cetane number to three stages, 50, 52 and 55 compared to the used conventional diesel fuel whose CN was 48.5. The addition of CN improver results in the decre
... Show MorePreviously many properties of graphene oxide in the field of medicine, biological environment and in the field of energy have been studied. This diversity in properties is due to the possibility of modification on the composition of this Nano compound, where the Graphene oxide is capable of more modification via addition other functional groups on its surface or at the edges of the sheet. The reason for this modification possibility is that the Sp3 hybridization (tetrahedral structure) of the carbon atoms in graphene oxide, and it contains many oxygenic functional groups that are able to reac with other groups. In this research the effect of addition of some amine compounds on electrical properties of graphene oxide has been studied by the
... Show MoreThe study conducted to demonstrate the effect of copper nanoparticles (Cu-NPs) on the seminal vesicle and testosterone hormone of males' albino mice. Twenty mice were used and divided into four groups control group and three groups that orally administrated with 100 mg/kg Cu-NPs for 7, 14 and 21 days and each group have 5 animals. Then, the blood was withdrawn from the animals to measure the level of the hormone testosterone in the next day after all the dosages period and then the animal was sacrificed. Seminal vesicles isolated from each animal and measured weight then histological sections were prepared to observe the changes of seminal vesicles sections. Then the morphometric was carried out to the lining cells and their nucleus and
... Show MoreFour genetic populations ( P1 , P2 , F1 , F2) were used in this study .
The parental cross in barley ( P1 barakq and P2 Pakistan ) was done . Many quantitative
pheno types were estimated such as plants length , tillers number , grains yield , capsules
number , the number of grains per capsule and the weight of 1000 grains . The results showed
significant differences in genetic variance values in the seconed filial generation ( F2) for all
the studied phenotypes : High values for the heritability were observed for all the studied
phenotypes .
These results indicated the effect of additive and non-additive genes on the quantitative
phenotypes . Finally , the selection of first generation can utilized for impro
Copper oxide thin films were deposited on glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The thickness of the thin films was around 0.43?m.Copper oxide thin films were annealed in air at (200, 300 and 400°C for 45min.The film structure properties were characterized by x-ray diffraction (XRD). XRD patterns indicated the presence of polycrystalline CuO. The average grain size is calculated from the X-rays pattern, it is found that the grain size increased with increasing annealing temperature. Optical transmitter microscope (OTM) and atomic force microscope (AFM) was also used. Direct band gap values of 2.2 eV for an annealed sample and (2, 1.5, 1.4) eV at 200, 300,400oC respect
... Show MoreAim: surface modification of titanium using fiber laser 1064 nm to enhance the bond strength to resin cement. Material and Methods: thirty titanium discs of 0.6 cm x 0.3 cm (diameter and thickness respectively) were categorized after preparation into three groups (n=10) as follows: control group with no surface treatment and two test groups were treated with fiber laser after estimation the appropriate parameters in the pilot study which are 81 ns pulse duration, 30,000 Hz frequency, 50 µm spot size and 10,000 mm/s scanning speed and different average power values (10 W and 20 W) depending on the tested group. Titanium discs surface characterization was performed by scanning electron microscope (SEM), a
... Show MoreRecently, research has focused on non-thermal plasma (NTP) technologies as a way to remove volatile organic compounds from the air stream, due to its distinctive qualities, which include a quick reaction at room temperature. In this work, the properties of the plasma generated by the dielectric barrier discharge (DBD) system and by a glass insulator were studied. Plasma was generated at different voltages (3, 4, 6, 7, 8 kV ) with a fixed distance between the electrodes of 5 mm, and a constant argon gas flow rate of (2.5) I/min. DBD plasma emission spectra were recorded for each voltage. The Boltzmann plot method was used to calculate the electron temperature in the plasma ( ), and the Stark expansion method was used to calculate the elec
... Show MoreAbstract
One of the most suitable materials to be used in latent heat thermal energy storage system (LHTES) are Phase change materials, but a problem of slow melting and solidification processes made many researchers focusing on how to improve their thermal properties. This experimental work concerned with the enhancing of thermal conductivity of phase change material. The enhancing method was by the addition of copper Lessing rings in phase change material (paraffin wax). The effect of diameter for the used rings was studied by using two different diameters (0.5 cm and 1cm). Also, three volumetric percentages of rings addition (3%, 6% and 10%) were tested for each diameter. The discharging process was done with
... Show More