This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different types of state-space equations using block method for conciliated the accuracy of the results of this method.
This study focuses on improving the safety of embankment dams by considering the effects of vibration due to powerhouse operation on the dam body. The study contains two main parts. In the first part, ANSYS-CFX is used to create the three-dimensional (3D) Finite Volume (FV) model of one vertical Francis turbine unit. The 3D model is run by considering various reservoir conditions and the dimensions of units. The Re-Normalization Group (RNG) k-ε turbulence model is employed, and the physical properties of water and the flow characteristics are defined in the turbine model. In the second phases, a 3D finite element (FE) numerical model for a rock-fill dam is created by using ANSYS®, considering the dam connection with its powerhouse
... Show MoreMost of the propositions, after the Arabic letter reached a position of integrity and proficiency, the calligrapher turned to the production of calligraphic formations in various aesthetic and expressive forms, investing the spiritual energies in what these calligraphic compositions show in artistic paintings. It carries a lot of meanings that are embodied in linear formations, and in order to reach these expressions and know the effective positions of space, this research is concerned with studying these technical treatments. The first chapter included the research problem, which included a question about the effectiveness of space in the linear painting, the importance of research and the temporal and spatial boundaries. As for the s
... Show MoreThe implementation of the concept of project scheduling in the organizations generally requires a set of procedures and requirements, So, most important of all is the understanding and knowledge of the tools and techniques which are called the methods of scheduling projects. Consequently, the projects of the municipality administration in the holy governorate of Karbala suffer from the problem of delaying their projects and chaos in the ways of implementation. To provide assistance to this directorate and to demonstrate how to schedule projects using one of the advanced scientific methods that proved their ability to schedule any project and its potential to accelerate the time of completion, as well as ease of use and effectiven
... Show MoreIn this paper the variable structure control theory is utilized to derive a discontinuous controller to the magnetic levitation system. The magnetic levitation system model is considered uncertain, which subjected to the uncertainty in system parameters, also it is open-loop unstable and strongly nonlinear. The proposed variable structure control to magnetic levitation system is proved, and the area of attraction is determined. Additionally, the chattering, which induced due to the discontinuity in control law, is attenuated by using a non-smooth approximate. With this approximation the resulted controller is a continuous variable structure controller with a determined steady state error according to the selected control
... Show MoreIn this work we explain and discuss new notion of fibrewise topological spaces, calledfibrewise soft ideal topological spaces, Also, we show the notions of fibrewise closed soft ideal topological spaces, fibrewise open soft ideal topological spaces and fibrewise soft near ideal topological spaces.
Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show More