This paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed for each obtained general solution, i.e. in the boiling and cooling states. To clarify the idea of temperature rise and fall over the time domain given in the problem, some figures were drawn manually using Microsoft PowerPoint. The obtained results confirm that the proposed transform technique is efficient, accurate, and fast in solving axisymmetric partial differential equations.
Blood samples were collected from (31) pregnant women infected with cytomegalovirus , also (15) blood samples were collected from congenitally infected infants, and (20),(15),(15) blood samples were collected from pregnant women ,non pregnant and infants, respectively, all of them were as control groups. CMV infection identified by using ELISA assay to detect specific CMV IgM & IgG in sera. The results of lymphocyte transformation showed a significant decrease when phytoheamagglutinin (PHA) used as stimulator, lymphocytes response in infected pregnant women was lower than that of non infected pregnant women as well as non pregnant women. Result also showed a significant decrease in the ability of lymphocyte division in healthy pregnant w
... Show MoreThe paired sample t-test for testing the difference between two means in paired data is not robust against the violation of the normality assumption. In this paper, some alternative robust tests have been suggested by using the bootstrap method in addition to combining the bootstrap method with the W.M test. Monte Carlo simulation experiments were employed to study the performance of the test statistics of each of these three tests depending on type one error rates and the power rates of the test statistics. The three tests have been applied on different sample sizes generated from three distributions represented by Bivariate normal distribution, Bivariate contaminated normal distribution, and the Bivariate Exponential distribution.
Background: A review of articles of method in treating compound phalangeal fractures by using mini-external fixator, elaborating the anatomy, mechanics, modalities of treatment, and complications of these types of fractures. Also, it compares between different studies regarding the functional results and final outcome. External fixation of phalangeal fractures is a good method for osteo synthesis in certain situations. The simplicity of the surgical procedure and the minimal disruption of the normal bone architecture also make it appealing.Objectives: Evaluating the functional results of the use of mini-external fixator for the treatment of compound fractures of phalangeal bones of the hand.Method: Our study consists of 15 patients, 12 w
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreIn this paper we design a Simulink model which can be evaluate the concentration of Copper, Lead, Zinc, Cadmium, Cobalt, Nickel, Crum and Iron. So, this model would be a method to determine the contamination levels of these metals with the potential for this contamination sources with their impact. The aim of using Simulink environment is to solve differential equations individually and as given data in parallel with analytical mathematics trends. In general, mathematical models of the spread heavy metals in soil are modeled and solve to predict the behavior of the system under different conditions.
This paper presents the non-linear finite element method to study the behavior of four reinforced rectangular concrete MD beams with web circular openings tested under two-point load. The numerical finite elements methods have been used in a much more practical way to achieve approximate solutions for more complex problems. The ABAQUS /CAE is chosen to explore the behavior of MD beams. This paper also studies, the effect of both size and shape of the circular apertures of MD beams. The strengthening technique that used in this paper is externally strengthening using CFRP around the opening in the MD beams. The numerical results were compared to the experimental results in terms of ultimate load failure and displace
... Show MoreIn this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example