This paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed for each obtained general solution, i.e. in the boiling and cooling states. To clarify the idea of temperature rise and fall over the time domain given in the problem, some figures were drawn manually using Microsoft PowerPoint. The obtained results confirm that the proposed transform technique is efficient, accurate, and fast in solving axisymmetric partial differential equations.
The drones have become the focus of researchers’ attention because they enter into many details of life. The Tri-copter was chosen because it combines the advantages of the quadcopter in stability and manoeuvrability quickly. In this paper, the nonlinear Tri-copter model is entirely derived and applied three controllers; Proportional-Integral-Derivative (PID), Fractional Order PID (FOPID), and Nonlinear PID (NLPID). The tuning process for the controllers’ parameters had been tuned by using the Grey Wolf Optimization (GWO) algorithm. Then the results obtained had been compared. Where the improvement rate for the Tri-copter model of the nonlinear controller (NLPID) if compared with
Water flow into unsaturated porous media is governed by the Richards’ partial differential equation expressing the mass conservation and Darcy’s laws. The Richards’ equation may be written in three forms,where the dependent variable is pressure head or moisture content, and the constitutive relationships between water content and pressure head allow for conversion of one form into the other. In the present paper, the “moisture-based" form of Richards’ equation is linearized by applying Kirchhoff’s transformation, which
combines the soil water diffusivity and soil water content. Then the similarity method is used to obtain the analytical solution of wetting front position. This exact solution is obtained by means of Lie’s
Significant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials. Motivated by the prediction and enhanced understanding of the behavior of two-dimensional (2D) bilayers (BL) of zirconium diselenide (ZrSe2), hafnium diselenide (HfSe2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2), we investigated the thermoelectric transport properties using information generated from experimental measurements to provide inputs to work with the functions of these materials and to determine the
Viscosity (η) of solutions of 1-butanol, sec-butanol, isobutanol and tert-butanol were investigated in aqueous solution structures of ranged composition from 0.55 to 1 mol.dm-3 at 298.15 K. The data of (η/η˳) were evaluated based on reduced Jone - Dole equation; η/η˳ =BC+1. In the term of B value, the consequences based on solute-solvent interaction in aqueous solutions of alcohols were deliberated. The outcomes of this paper discloses that alcohols act as structure producers in the water. Additionally, it has shown that solute-solvent with interacting activity of identical magnitude is in water-alcohol system
A new technique to study the telegraph equation, mostly familiar as damped wave equation is introduced in this study. This phenomenon is mostly rising in electromagnetic influences and production of electric signals. The proposed technique called as He-Fractional Laplace technique with help of Homotopy perturbation is utilized to found the exact and nearly approximated results of differential model and numerical example of telegraph equation or damped wave equation in this article. The most unique term of this technique is that, there is no worry to find the next iteration by integration in recurrence relation. As fractional Laplace integral transformation has some limitations in non-linear terms, to get the result of nonlinear term in
... Show MoreIn the current analysis, the effects of circumferential scratches along the inner surface of a 170ᵒ -arc partial journal bearing has been numerically investigated. Their impact on the thermo-elasto-hydrodynamic performance characteristics, including maximum pressure, temperature, deformation, and stress, has been examined thoroughly. The ANSYS Fluent CFD commercial code was employed to tackle the iterative solution of flow and heat transfer patterns in the fluid film domain. They are then applied to the ANSYS Static Structure solver to compute the deformation and stress resulted in the solid bearing zone. A wide range of operating conditions has been considered, including the eccentricity ratio ( ) and scratch depth (
... Show MoreOne of the health issues that a coronavirus can induce is blood clotting. Coronavirus can be prevented in a number of ways. Vaccination is one of the critical methods for preventing illness or lessening its impact. This study seeks to estimate a few blood coagulation variables. 147 samples were collected from the Baghdad Governorate in the autumn of 2021. The samples were split into three groups: COVID-19 patients, healthy individuals before and after receiving the (Pfizer-BioNTech) vaccine, and healthy individuals only. Prothrombin Time (PT), Partial Thromboplastin Time (PTT), Protein C (PTN-C), Protein S (PTN-S), and International Normalized Ratio (INR) for 49 samples were measured and computed for each group. The results have shown th
... Show MoreThe stress – strength model is one of the models that are used to compute reliability. In this paper, we derived mathematical formulas for the reliability of the stress – strength model that follows Rayleigh Pareto (Rayl. – Par) distribution. Here, the model has a single component, where strength Y is subjected to a stress X, represented by moment, reliability function, restricted behavior, and ordering statistics. Some estimation methods were used, which are the maximum likelihood, ordinary least squares, and two shrinkage methods, in addition to a newly suggested method for weighting the contraction. The performance of these estimates was studied empirically by using simulation experimentation that could give more varieties for d
... Show MoreThe adsorption behavior of Bismarck brown (BB) dye from aqueous solutions onto graphene oxide GO and graphene oxide-g-poly (n-butyl methacrylate-co-methacrylic acid) GO-g-pBCM as adsorbents was investigated. The prepared GO and GO-g-pBCM were characterized by Fourier transform infrared spectroscopy FTIR, which confirmed the compositions of the prepared adsorbents. Adsorption of BB dye onto GO and GO-g-pBCM was explored in a series of batch experiments under various conditions. The data were examined utilizing Langmuir and Freundlich isotherms. The Langmuir isotherm was seen as increasingly reasonable from the experimental information of dye on formulating adsorbents. Kinetic investigations showed that the experimental data were fitted ve
... Show More