This paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed for each obtained general solution, i.e. in the boiling and cooling states. To clarify the idea of temperature rise and fall over the time domain given in the problem, some figures were drawn manually using Microsoft PowerPoint. The obtained results confirm that the proposed transform technique is efficient, accurate, and fast in solving axisymmetric partial differential equations.
The adsorption behavior of Bismarck brown (BB) dye from aqueous solutions onto graphene oxide GO and graphene oxide-g-poly (n-butyl methacrylate-co-methacrylic acid) GO-g-pBCM as adsorbents was investigated. The prepared GO and GO-g-pBCM were characterized by Fourier transform infrared spectroscopy FTIR, which confirmed the compositions of the prepared adsorbents. Adsorption of BB dye onto GO and GO-g-pBCM was explored in a series of batch experiments under various conditions. The data were examined utilizing Langmuir and Freundlich isotherms. The Langmuir isotherm was seen as increasingly reasonable from the experimental information of dye on formulating adsorbents. Kinetic investigations showed that the experimental data were fitted ve
... Show MoreThe method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.
This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural
... Show MoreThe main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
In the current analysis, the effects of circumferential scratches along the inner surface of a 170ᵒ -arc partial journal bearing has been numerically investigated. Their impact on the thermo-elasto-hydrodynamic performance characteristics, including maximum pressure, temperature, deformation, and stress, has been examined thoroughly. The ANSYS Fluent CFD commercial code was employed to tackle the iterative solution of flow and heat transfer patterns in the fluid film domain. They are then applied to the ANSYS Static Structure solver to compute the deformation and stress resulted in the solid bearing zone. A wide range of operating conditions has been considered, including the eccentricity ratio ( ) and scratch depth (
... Show MoreAudio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show MoreThe present study focused mainly on the analysis of stiffened and unstiffened composite laminated plates subjected to buckling load. Analytical, numerical and experimental analysis for different cases has been considered. The experimental investigation is to manufacture the laminates and to find mechanical properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus. The compressive test was carried to find the critical buckling load of plate. The design parameters of the laminates such as aspect ratio, thickness ratio, boundary conditions and number of stiffeners were investigated using high order shear deformation theory (HOST) and Finite element coded by ANSYS .The main conclusion was the buckling load c
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show Morethis work, a simple method was used to prepare the MnO2 nanoparticles. These nanoparticles then were characterized by several techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and atomic force microscope (AFM). The results showed that the diffraction peak of MnO2 nanoparticles was similar to that of standard data. The images of AFM and SEM indicated that the MnO2 nanorods were growing from the MnO2 nano spherical shape. PVA-pentaerythritol/MnO2 nanocomposite films were fabricated by evaporating casting method. The dielectric constant and loss tangent of P-Ery/MnO2 films were measured between 10 kHz and 1 MHz using LCR. As the content of MnO2 increased, the dielectric constant
... Show MoreThis paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used.
Experimental results shows LPG-
... Show More