Sweet pepper (Capsicum annuum L.) is an economically important vegetable crop. Wilt disease caused by Fusarium oxysporum f. sp. capsici is a specific pathogen that affects the pepper. Four isolates of F. oxysporum f. sp. capsici Fo3, Fo6, Fo7 and Fo8 were obtained from diseased pepper plants that were collected from different pepper fields in Baghdad. Fo6 isolate that has high pathogenicity to pepper seeds, Trichoderma harzianum (Th) was tested in vitro against F. oxysporum f. sp. capsici showed a high inhibition rate for the isolate Fo6, the concentration of chelated iron Fe-EDDHA 0.5% reduced the radial growth of Fo6 while did not affect the growth of Th. In pots experiment, the treatment Fo6+Th+Fe showed a significant reduction in the incidence and severity of root rot and wilt diseases. The treatment Th+Fe achieved a highly significant increase in fresh and dry root and vegetative weight 63.36, 130.56, 4.55 and 10.26g respectively, compared with control (without pathogenic) reaching 11.10, 54.83, 1.30 and 3.70g respectively. Moreover, in greenhouse the treatment Fo6+Th+Fe has reduced the incidence and severity of disease 3.33 and 1.67% respectively, and the treatment Th+Fe gave an increase in the total chlorophyll content 104 SPAD compared with the control 70.4 SPAD.
In this study, the electro-hydraulic servo system for speed control of fixed displacement hydraulic motor using proportional valve and (PID) controller is investigated theoretically ,experimentally and simulation . The theoretical part includes the derivation of the nonlinear mathematical model equation of (valve – motor ) combination system and the derivation of the transfer function for the complete hydraulic system , the stability test of the system during the operation through the transfer function using MATLAB package
V7.1 have been done. An experimental part includes design and built hydraulic test rig and simple PID controller .The best PID gains have been calculated experimentally and simulation, speed control performance te
BACKGROUND: SARS-CoV-2 (COVID-19) is considered a highly infectious and life threatening disease. OBJECTIVE: The present paper aims to evaluate various aspects of preventive measures and clinical management of the scheduled visits for orthodontic patients to the dental clinics during the outbreak of COVID-19, and to assess how orthodontists dealt with this challenge. METHODS: Orthodontists in private and public clinics were invited to fill a questionnaire that addressed infection control protocols and concerns about clinical management of patients in the clinics during the pandemic. Frequncies and percentages of the responses were obtained and compared using Chi-square tests. RESULTS: About 77% of those working in private clinics, a
... Show MoreIn recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne
... Show MoreThis paper deals with modelling and control of Euler-Bernoulli smart beam interacting with a fluid medium. Several distributed piezo-patches (actuators and/or sensors) are bonded on the surface of the target beam. To model the vibrating beam properly, the effect of the piezo-patches and the hydrodynamic loads should be taken into account carefully. The partial differential equation PDE for the target oscillating beam is derived considering the piezo-actuators as input controls. Fluid forces are decomposed into two components: 1) hydrodynamic forces due to the beam oscillations, and 2) external (disturbance) hydrodynamic loads independent of beam motion. Then the PDE is discretized usi
This paper investigate a sensorless speed control of a separately excited dc motor fed from a buck type dc-dc converter. The control system is designed in digital technique by using a two dimension look-up table. The performance of the drive system was evaluated by digital simulation using Simulink toolbox of Matlab.