Preferred Language
Articles
/
bsj-7988
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting ADR.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
Design and Analysis WIMAX Network Based on Coverage Planning
...Show More Authors

In this paper, wireless network is planned; the network is predicated on the IEEE 802.16e standardization by WIMAX. The targets of this paper are coverage maximizing, service and low operational fees. WIMAX is planning through three approaches. In approach one; the WIMAX network coverage is major for extension of cell coverage, the best sites (with Band Width (BW) of 5MHz, 20MHZ per sector and four sectors per each cell). In approach two, Interference analysis in CNIR mode. In approach three of the planning, Quality of Services (QoS) is tested and evaluated. ATDI ICS software (Interference Cancellation System) using to perform styling. it shows results in planning area covered 90.49% of the Baghdad City and used 1000 mob

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 25 2017
Journal Name
International Journal On Advanced Science, Engineering And Information Technology
A Novel DNA Sequence Approach for Network Intrusion Detection System Based on Cryptography Encoding Method
...Show More Authors

A novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results sh

... Show More
View Publication
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Dec 07 2022
Journal Name
في مجلة الدراسات الللغوية والترجمية
Semantic and cultural analysis of phraseological units with the names of wild animals in Russian and Arabic
...Show More Authors

Summary:This article discusses the topic of phraseological units with the names of wild animals in the Russian and Arabic languages in the aspect of their comparative semantic and cultural analysis, since a comparative analysis of the meanings of phraseological units of the Arabic and Russian languages, detection of coincidences and differences in the compared languages, is an important method for studying linguoculturology, since phraseological units represent a reflection of culture in the language

Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
International Conference Of Numerical Analysis And Applied Mathematics Icnaam 2019
Functionalized multi-walled carbon nanotubes network sensor for NO2 gas detection at room temperature
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Sep 26 2025
Journal Name
Applied Data Science And Analysis
Deep Learning in Genomic Sequencing: Advanced Algorithms for HIV/AIDS Strain Prediction and Drug Resistance Analysis
...Show More Authors

Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id

... Show More
View Publication
Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Engineering
Seismic Effects and Static Analysis for the Artificial Damped Outrigger Systems in Tall R.C Buildings
...Show More Authors

This paper studies the combination fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. It works by connecting the central core, comprising either shear walls or braced frames, to the outer perimeter columns.

     The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model, and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximum lateral load at the top of the building is calculated, and  this load  w

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 09 2025
Journal Name
Journal Of Al-farahidi’s Arts
Artificial Intelligence Applications in Machine Translation and Their Role in Bridging Semantic Gaps Across Languages: A Comparative Analytical Study of Chat GPT and Deep Seek
...Show More Authors

With the fast-growing of neural machine translation (NMT), there is still a lack of insight into the performance of these models on semantically and culturally rich texts, especially between linguistically distant languages like Arabic and English. In this paper, we investigate the performance of two state-of-the-art AI translation systems (ChatGPT, DeepSeek) when translating Arabic texts to English in three different genres: journalistic, literary, and technical. The study utilizes a mixed-method evaluation methodology based on a balanced corpus of 60 Arabic source texts from the three genres. Objective measures, including BLEU and TER, and subjective evaluations from human translators were employed to determine the semantic, contextual an

... Show More
Preview PDF
Publication Date
Mon Oct 13 2025
Journal Name
Mesopotamian Journal Of Cybersecurity
Improvement of the Face Recognition Systems Security Against Morph Attacks using the Developed Siamese Neural Network
...Show More Authors

Face Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d

... Show More
View Publication Preview PDF
Scopus Crossref