This study investigated the treatment of dairy wastewater using the electrocoagulation method with iron filings as electrodes. The study dealt with real samples collected from local factory for dairy products in Baghdad. The Response Surface Methodology (RSM) was used to optimize five experimental variables at six levels for each variable, for estimating chemical oxygen demand (COD) removal efficiency. These variables were the distance between electrodes, detention time, dosage of NaCl as electrolyte, initial COD concentration, and current density. RSM was investigated the direct and complex interaction effects between parameters to estimate the optimum values. The respective optimum value was 1 cm for the distance between electrodes, (60 – 120) min for detention time, 250 mg NaCl/L added, C0/6 = 5,775 mg COD/L as initial COD concentration, and 7.884 - 8.077 mA/cm2 as current provided. At the optimum parameter values, the optimum COD removal efficiency was 73.4%. Meanwhile, the study also performed removal efficiency for nitrogen (N) and phosphate (P) due to their effects on the aquatic life and systems. The optimum removal efficiency for phosphorus and nitrogen was 98.0% and 80.3%, respectively. Due to its effects on the environment and to comply with local legislations, treating these wastewaters using eco-friendly processes was highly recommended taking in consideration the economic feasibility, flexibility and easiness to operate. In addition, the study proved that the high surface area for iron filings played a crucial role in removing process.
KE Sharquie, AA Noaimi, EA Al-Janabi, Our Dermatology Online, 2014 - Cited by 11
The increase in obesity and the many accompanying diseases is attributed to the increased production and consumption of foods made of non-nutritive sweeteners without regard to the risks of consuming additional calories, and this in turn leads to hormonal imbalance and metabolic disorders and the resulting imbalance and ill health that have spread to all segments of society. During the research, 0.01, 0.02, 0.03, 0.04 and 0.05 % of stevia sweetener was added to the cream instead of the sugar used. Physical and chemical tests were performed for the stevia extract and the microbial content in the cream, as well as the sensory evaluation. It was noted that fortifying the cream with calorie-free stevia sugar led to the production of
... Show MorePhenol oxidation by Fenton's reagent (H2O2 + Fe+2) in aqueous solution has been studied for the purpose of learning
more about the reactions involved and the extent of the oxidation process, under various operating conditions. An initial
phenol concentration of 100 mg/L was used as representative of a phenolic industrial wastewater. Working temperature
of 25C was tested, and initial pH was set at 5.6 . The H2O2 and the Fe+2 doses were varied in the range of
(H2O2/Fe+2/phenol = 3/0.25/1 to 5/0.5/1). Keeping the stirring speed of 200 rpm.
The results exhibit that the highest phenol conversion (100%) was obtained under (H2O/Fe+2/phenol ratio of 5/0.5/1)
at about 180 min. The study has indicated that Fenton's oxidation i
This study investigates the elimination of chemical oxygen demand (COD) from an Iraqi petroleum refinery effluent through a combined electro‐Fenton and adsorption process (EF+AC). Response surface methodology (RSM) with a Box–Behnken design (BBD) was employed to investigate the effects of FeSO 4 concentration, current density, and electrolysis time on the reduction of COD using the EF technique. According to the results of the analysis of variance (ANOVA) for the EF technique, FeSO 4 concentrations, with a contribution of 40.06%, and cur
This study examined >140 relevant publications from the last few years (2018–2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending o
... Show MoreElectrodeposition of metal oxides on graphite electrodes can improve their ability to remove organic substances. In this work, multicomponent oxides of Mn, Co, and Ni were electrochemically deposited on both the anode and cathode of graphite electrodes to enhance their performance in removing phenol. Formation of the deposit was achieved within 2 h in current densities of 20, 25, 30, and 35 mA/cm2 for better composite properties. The deposited layer was characterized by testing the surface structure, morphology, composition, and roughness. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Atomic force microscopy (AFM) techniques facilitated these tests. The composite electrodes have synthesized
... Show MoreIn this investigation a high density polyethylene (HDPE) was used as a substitute to polyvinylchloride in the production of lead acid battery separators. This has been achieved by preparing mixtures of different percentages of the feed materials which include a high density polyethylene (HDPE) locally produced, filler materials such as silica and oils such as dioctylphthalate (DOP) or paraffin which were added to the mixture to improve the final properties of the separator. The materials were compounded by two roll-mills under the same conditions. The following parameters are involved: &nb
... Show More
