The present research aims at recognizing the difficulties and problems which hamper teachers and educators alike when using the internet for educational purposes.It discusses the benefits of the internet as a source of information or publication and as a communicative tool.Arandom sample of (30) teachers working at schools in Baghdad / Second Risafa,was selected.Three of the sample members use the internet for student project plans via internet centers, whereas 16 of them use it for chatting, emailing and research purposes.The rest of the sample have limited knowledge of the internet. The researcher used the interviewing method to gather data from the sample members.The method involved eleven questions which required their replies.The repeated distribution and the percentage were employed to analyze the collected data.Among the conclusions arrived at is that the difficulties confronted by the teachers are their computer and internet illiteracy, particularly in teaching sciences, lack of internet and computer training courses,unavailability of computers, shortage of computer and internet guides and manuals which,even when available,do not match the ongoing progress,lack of technical support,continuing power failure, high cost of computers and internet access systems, anxiety and fear of misusing the internet, which led to negative orientation in internet use,fear of accessing non-educational sites,fear of losing focus when browsing the web, in addition to the teachers’ lack of knowledge of other languages such as the English. The study makes the following recommendations.It recommends that the Ministry of Education should provide computers which are connected to the internet.Computer and internet training courses must also be held to provide teachers with the skills they need to use the internet in teaching science.There should also be curricula prepared which include the use computers and the internet in most subjects, particularly science.Material and technical support should also be provided for schools.
Construction contractors usually undertake multiple construction projects simultaneously. Such a situation involves sharing different types of resources, including monetary, equipment, and manpower, which may become a major challenge in many cases. In this study, the financial aspects of working on multiple projects at a time are addressed and investigated. The study considers dealing with financial shortages by proposing a multi-project scheduling optimization model for profit maximization, while minimizing the total project duration. Optimization genetic algorithm and finance-based scheduling are used to produce feasible schedules that balance the finance of activities at any time w
The growing use of tele
This paper presents a new secret diffusion scheme called Round Key Permutation (RKP) based on the nonlinear, dynamic and pseudorandom permutation for encrypting images by block, since images are considered particular data because of their size and their information, which are two-dimensional nature and characterized by high redundancy and strong correlation. Firstly, the permutation table is calculated according to the master key and sub-keys. Secondly, scrambling pixels for each block to be encrypted will be done according the permutation table. Thereafter the AES encryption algorithm is used in the proposed cryptosystem by replacing the linear permutation of ShiftRows step with the nonlinear and secret pe
... Show MoreBreast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreResearch summarized in applying the model of fuzzy goal programming for aggregate production planning , in General Company for hydraulic industries / plastic factory to get an optimal production plan trying to cope with the impact that fluctuations in demand and employs all available resources using two strategies where they are available inventories strategy and the strategy of change in the level of the workforce, these strategies costs are usually imprecise/fuzzy. The plant administration trying to minimize total production costs, minimize carrying costs and minimize changes in labour levels. depending on the gained data from th
... Show MoreMany authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai
... Show MoreIn aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreIn this work, using GPS which has best accuracy that can be established set of GCPs, also two satellite images can be used, first with high resolution QuickBird, and second has low resolution Landsat image and topographic maps with 1:100,000 and 1:250,000 scales. The implementing of these factors (GPS, two satellite images, different scales for topographic maps, and set of GCPs) can be applying. In this study, must be divided this work into two parts geometric accuracy and informative accuracy investigation. The first part is showing geometric correction for two satellite images and maps.
The second part of the results is to demonstrate the features (how the features appearance) of topographic map or pictorial map (image map), Where i