The electrical properties of the AlNiCo thin films with thickness (1000oA) deposited on glass substrates using Ion – Beam sputtering (IBS) technique under vacuum <10-6 torr have been studied . Also it studied the effect of annealing temperature from this films , It is found that the effective energy decrease with increase of temperature and the conductivity decrease with increase temperature 323oK but after this degree the conductivity increasing .
Ceramics type Yttrium oxide with Silicon carbide. were selected to investigate its sintered density, microstructure and electrical properties, after adding V2O5, of 100 nm grain size. Different weight percentages ranging from (0.01,0.02,0.03 and 0.04) were used. Dry milling applied for twelve hours. The pelletized samples were sintered at atmospheric of static air and at sintering temperature 1400 ˚C, for three hours. The crustal structure test shoes the phase which is yttrium silicon carbide Scanning electron microscopy, scan sintered microstructure. Samples after sintering were electrically investigated by measuring its capacitance, dielectric constant and their results showed increasing after added V2O5 particles at the combinat
... Show MoreThe current study deals with host-guest complex formation between cucurbit [7] urils as host and lansoprazole as guesti using PM3 (semi empirical molecules orbital calculations) also DFT calculations. In this complex, the formation of hydrogen bonding may be occurred through portal oxygen atoms(O2) of cucurbit [7] urils and amine groups (NH 2 )of the drug. The energies of HOMO and LUMO orbital’s have been computed for the host guest complex and its components. The result of the stabilization energy explained a complex formation.
The atomic properties have been studied for He-like ions (He atom, Li+, Be2+ and B3+ions). These properties included, the atomic form factor f(S), electron density at the nucleus , nuclear magnetic shielding constant and diamagnetic susceptibility ,which are very important in the study of physical properties of the atoms and ions. For these purpose two types of the wave functions applied are used, the Hartree-Fock (HF) waves function (uncorrelated) and the Configuration interaction (CI) wave function (correlated). All the results and the behaviors obtained in this work have been discussed, interpreted and compared with those previously obtained.
An experimental program was conducted to determine the residual of composite Steel Beams-Reinforced Concrete (SB-RC) deck floors fabricated from a rolled steel beam topped with a reinforced concrete slab, exposed to high temperatures (fire flame) of 300, 500, and 700ºC for 1 hour, and then allowed to cool down by leaving them in the lab condition to return to the ambient temperature. The burning results showed that, by exposing them to a fire flame of up to 300ºC, no serious permanent deflection occurred. It was also noticed that the specimen recovered 93% of 19.2 mm of the deflection caused by burning. The recovered deflection of burned composite SB-RC deck floor at 500ºC was 40% of 77.9 mm of the deflection caused by burning with a res
... Show MoreThis paper deals with modelling and control of Euler-Bernoulli smart beam interacting with a fluid medium. Several distributed piezo-patches (actuators and/or sensors) are bonded on the surface of the target beam. To model the vibrating beam properly, the effect of the piezo-patches and the hydrodynamic loads should be taken into account carefully. The partial differential equation PDE for the target oscillating beam is derived considering the piezo-actuators as input controls. Fluid forces are decomposed into two components: 1) hydrodynamic forces due to the beam oscillations, and 2) external (disturbance) hydrodynamic loads independent of beam motion. Then the PDE is discretized usi