The real and imaginary part of complex dielectric constant for InAs(001) by adsorption of oxsagen atoms has been calculated, using numerical analysis method (non-linear least square fitting). As a result a mathematical model built-up and the final result show a fairly good agreement with other genuine published works.
In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.
Finally, all algori
... Show MoreIn this contribution, density functional theory-based calculations have been carried out to assess the electronic, photocatalytic and optical properties of Ce1-xTixO2 system. Ti incorporation leads to a decrease of Ce 4f states and enhancement of Ti 3d states in the bottom of conduction band. Furthermore, it was found that doping ceria with Ti-like transition metals could evidently shift the absorption of pure CeO2 towards higher wavelength range. These findings can provide some new insights for designing CeO2-based photocatalysts with high photocatalytic performance. To the best of our knowledge, this investigation calculates Mullikan’s charge transfer of Ce1-xTixO2 system for the first time. Charge transfer reveals an ionic bond between
... Show MoreIn this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
The nanocomposite on the base of synthesis Copper iodide
nanoparticles and polyvinyl alcohol (PVA/CuI) with different
concentration of CuI were obtained using casting technique.
PVA/CuI polymer composite samples have been prepared and
subjected to characterizations using FTIR spectroscopy, The FTIR
spectral analysis shows remarkable variation of the absorption peak
positions with increasing CuI concentration. The obtained results by
X-ray diffraction indicated the formation of cubic CuI particles. The
effects of CuI concentrations on the optical properties of the PVA
films were studied in the region of wavelength, (190-1100) nm.
From the derivation of Tauc's relation it was found that the direct
allowed t