The photo-electrochemical etching (PECE) method has been utilized to create pSi samples on n-type silicon wafers (Si). Using the etching time 12 and 22 min while maintaining the other parameters 10 mA/cm2 current density and HF acid at 75% concentration.. The capacitance and resistance variation were studied as the temperature increased and decreased for prepared samples at frequencies 10 and 20 kHz. Using scanning electron microscopy (SEM), the bore width, depth, and porosity % were validated. The formation of porous silicon was confirmed by x-ray diffraction (XRD) patterns, the crystal size was decreased, and photoluminescence (PL) spectra revealed that the emission peaks were centered at 2q of 28.5619° and 28.7644° for etching time 12 and 22 min, respectively. Studying the capacitance and resistivity during temperature increasing and decreasing for both itching times shows clearly that the prepared pSi as a thermal sensor is working better and in more selectivity for 20 min itching time
Thin a-:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As), and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on value
... Show MoreThis survey investigates the thermal evaporation of Ag2Se on glass substrates at various thermal annealing temperatures (300, 348, 398, and 448) °K. To ascertain the effect of annealing temperature on the structural, surface morphology, and optical properties of Ag2Se films, investigations and research were carried out. The crystal structure of the film was described by Xray diffraction and other methods.The physical structure and characteristics of the Ag2Se thin films were examined using X-ray and atomic force microscopy (AFM) based techniques. The Ag2Se films surface morphology was examined by AFM techniques; the investigation gave average diameter, surface roughness, and grain size mutation values with increasing annealing temperature
... Show MoreContents IJPAM: Volume 116, No. 3 (2017)
Thin films of Zinc Selenide ZnSe have been prepared by using thermal evaporation in vacuum technique (10-5Torr) with thickness (1000, 2700, 4000) A0 and change electrode material and deposited on glass substrates with temperature (373K) and study some electrical properties at this temperature . The graphs shows linear relation between current and voltage and the results have shown increases in the value of current and electrical conductivity with increase thickness and change electrode material from Aluminum to Copper
In This paper, CuO thin films having different thickness (250, 300 , 350 and 400) nm were deposited on glass substrates by thermal vacuum evaporator. The thermal oxidation of this evaporated film was done in heated glass at temperature (300 in air at one hour. The study of X-ray diffraction investigated all the exhibit polycrystalline nature with monoclinic crystal structure include uniformly grains. Thin film’s internal structure topographical and optical properties. Furthermore, the crystallization directions of CuO (35.54 , 38.70 ) can be clearly observed through an X-ray diffraction analysis XRD, Atomic Force Microscope AFM (topographic image) showed that the surface Characteristics , thin films crystals grew with increases in either
... Show MoreInvestigating the thermal and electrical gains and efficiencies influence the designed photovoltaic thermal hybrid collector (PVT) under different weather conditions. The designed system was manufactured by attaching a fabricated cooling system made of serpentine tubes to a single PV panel and connecting it to an automatic controlling system for measuring, monitoring, and simultaneously collecting the required data. A removable glass cover had been used to study the effects of glazed and unglazed PVT panel situations. The research was conducted in February (winter) and July (summer), and March for daily solar radiation effects on efficiencies. The results indicated that electrical and thermal gains increased by the incre
... Show MoreThe study aims to identify the effectiveness of a structural theory-based training program in enhancing the teaching practices of Arabic language teachers teaching grade ten in South Al Batinah in Sultanate of Oman. The study used the quasi-experimental design, and the sample consisted of 40 male and female teachers. To achieve the objectives of the study, a training program, an observation form and a measurement tool of teachers’ tendencies towards a structural teaching were made. The program was implemented with an experimental group of 20 female and male teachers in the first semester of the academic year 2018/2019. The study has found that there is a statistically significant difference between the average grades before and after i
... Show MoreAluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add
... Show MoreThe aim of the present research is to study the dissolution and transport process of
benzene as a light nonaqueous phase liquid (LNAPL) in saturated porous media.
Unidirectional flow at water velocities ranged from 0.90 to 3.60 cm/hr was adopted to study
this process in a three dimensional saturated sand tank (100 cm×40 cm×35 cm). This tank
represents a laboratory-scale aquifer. The aquifer was constructed by packing homogeneous
sand in the rectangular tank. The experimental results were used to characterize the
dissolution behavior of an entrapped nonaqueous phase benzene source in a three dimensional
aquifer model. The time invariant average mass transfer coefficient was determined at each
interstitial velocit