Biodiesel can be prepared from various types of vegetable oils or animal fats with the aid of a catalyst.
Calcium oxide (CaO) is one of the prospective heterogeneous catalysts for biodiesel synthesis. Modification
of CaO by impregnation on silica (SiO2) can improve the performance of CaO as catalyst. Egg shells and rice
husks as biomass waste can be used as raw materials for the preparation of the silica modified CaO catalyst.
The present study was directed to synthesize and characterize CaO impregnated SiO2 catalyst from biomass
waste and apply it as catalyst in biodiesel synthesis. The catalyst was synthesized by wet impregnation
method and characterized by x-ray diffraction, x-ray fluorescence, nitrogen adsorption-desorption, and
basicity density. The activity of the catalyst in biodiesel synthesis was assayed at different molar ratios of
palm oil to methanol ranging from 1:6, 1:9, 1:12 and 1:15. The biodiesel composition was determined by gas
chromatography-mass spectroscopy and the properties of the biodiesel were also characterized. The results
showed that the CaO impregnated SiO2 catalyst was successfully synthesized based on confirmation by XRD
and XRF. The catalyst has a surface area, average pore diameter, total pore volume, and basicity density of
19.38 m2
/g, 3.22 nm, 0.0122 cm3
/g, and 3.4 mmol/g, respectively. The catalyst activity assay indicates that
the molar ratio of palm oil to methanol of 1:12 is the optimum condition for biodiesel synthesis. At this
molar ratio, 81.4% biodiesel yield was achieved, and it met the quality standards according to ASTM D
6751.
Low-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed d
... Show MoreCadastral map environment is directed, more than ever before, towards Artificial Intelligence use to produce fast and accurate maps and keep up with the huge population growth. The traditional approach currently in production of maps is expensive and effort-intensive in addition to be considered as highly time-consuming process. UAV-based cadastral mapping imagery that use automatic techniques are newly being exploited to accelerate the process of production or updating. The state-of-the-art intelligent algorithms are capable to extract land boundaries from images better than conventional techniques. This paper presents an automatic workflow of cadastral map production based on land boundary and automatic f
... Show MoreIn this study, the flexural performance of a new composite beam–slab system filled with concrete material was investigated, where this system was mainly prepared from lightweight cold-formed steel sections of a beam and a deck slab for carrying heavy floor loads as another concept of a conventional composite system with a lower cost impact. For this purpose, seven samples of a profile steel sheet–dry board deck slab (PSSDB/PDS) carried by a steel cold-formed C-purlins beam (CB) were prepared and named “composite CBPDS specimen”, which were tested under a static bending load. Specifically, the effects of the profile steel sheet (PSS) direction (parallel or perpendicular to the span of the specimen) using different C-purlins c
... Show MoreIn subterranean coal seam gas (CSG) reservoirs, massive amounts of small-sized coal fines are released during the production and development stages, especially during hydraulic fracturing stimulation. These coal fines inevitably cause mechanical pump failure and permeability damage due to aggregation and subsequent pore-throat blockage. This aggregation behavior is thus of key importance in CSG production and needs to be minimized. Consequently, such coal fines dispersions need to be stabilized, which can be achieved by the formulation of improved fracturing fluids. Here, we thus systematically investigated the effectiveness of two additives (ethanol, 0.5 wt % and SDBS, 0.001 and 0.01 wt %) on dispersion stability for a wide range of condit
... Show MoreFlame atomic absorption spectrophotometer (FAAS) was used in this study to determine the concentrations of heavy metals such as Ca, Fe, Mn, Cd, Co, Cr, Ni, Cu, Pb and Zn in some food additives of Iraq. The order of metal contents in food additives was found to be Ca ˃ Mn ˃ Fe ˃ Cu ˃ Zn ˃ Pb ˃ Cr ˃ Ni ˃ Co ˃ Cd. The concentration level of each metal was compared with that recommended by food agriculture organisation (FAO) and world health organisation (WHO). Calibration curves were linear for all standard solutions of heavy metals in the range starting from 0.02-0.4 mg/kg for Cd to 11-100 mg/kg for Ca. The correlation coefficients values (R2) of calibrations were investigated and ranged from 0.9971 for Cr to 0.9999 for Ca. Th
... Show MoreWater quality planning relies on Biochemical Oxygen Demand BOD. BOD testing takes five days. The Particle Swarm Optimization (PSO) is increasingly used for water resource forecasting. This work designed a PSO technique for estimating everyday BOD at Al-Rustumiya wastewater treatment facility inlet. Al-Rustumiya wastewater treatment plant provided 702 plant-scale data sets during 2012-2022. The PSO model uses the daily data of the water quality parameters, including chemical oxygen demand (COD), chloride (Cl-), suspended solid (SS), total dissolved solids (TDS), and pH, to determine how each variable affects the daily incoming BOD. PSO and multiple linear regression (MLR) findings are compared, and their performance is evaluated usin
... Show MoreIraqi western desert is characterized by a widespread karst phenomenon and caves. Euphrates formation (Lower Miocene) includes enormous sinkholes and cavities within carbonate rocks that usually cause severe damages to any kind of engineering facilities built over it. 3D resistivity imaging techniques were used in detecting this kind of cavities in complicated lithology. The 3D view was fulfilled by collating seven 2D imaging lines. The 2D imaging survey was carried out by Dipole-dipole array with (n) factor and electrode spacing (a) of 6 and 2m respectively. The horizontal slices of the 3D models give a good subsurface picture. There are many caves in all directions (x, y, z). They reveal many small caves near the surface. Thes
... Show More