The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabets are detected using the mathematical algorithm of the morphological gradient. After that, the images are passed to the CNN architecture. The available database of Arabic handwritten alphabets on Kaggle is utilized for examining the model. This database consists of 16,800 images divided into two datasets: 13,440 images for training and 3,360 for validation. As a result, the model gives a remarkable accuracy equal to 99.02%.
This paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for
... Show MoreWireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi
... Show MoreThe present study aims to identify the role of behavioral disorders (anxiety disorder, behavior disorder "behavior", confrontation and challenge disorder, aggressive behavior) in predicting bullying patterns (verbal, physical, electronic, school) in a sample of adolescents with autism spectrum disorder. For this purpose, the researcher developed scales to measure the behavioral disorders and the bullying patterns among adolescents with autism spectrum disorder. The researcher adopted the descriptive survey approach. The study sample consists of (80) adolescents with autism spectrum disorder with ages range from (15-19 years) and (45-53 years old) in association with israr association for people with special needs in the northern borders
... Show MoreThis study compared and classified of land use and land cover changes by using Remote Sensing (RS) and Geographic Information Systems (GIS) on two cities (Al-Saydiya city and Al-Hurriya) in Baghdad province, capital of Iraq. In this study, Landsat satellite image for 2020 were used for (Land Use/Land Cover) classification. The change in the size of the surface area of each class in the Al-Saydiya city and Al-Hurriya cities was also calculated to estimate their effect on environment. The major change identified, in the study, was in agricultural area in Al-Saydiya city compare with Al-Hurriya city in Baghdad province. The results of the research showed that the percentage of the green
Abstract:
Viral marketing has become one of the modern strategies adopted by organizations in the marketing of products and services. The idea of viral marketing focuses on the social relations between individuals and groups. As a result of the technological development, most organizations have resorted to using the Internet and its applications and social media to market and promote their products. To reach the largest number of consumers to display their products and services in many ways, including text, audio, visual or video and thus affect the behavior of the consumer.
The problem of the study was the following question (do viral marketing technologies have an impact on consumer behavior?)
... Show MoreThe national pharmaceutical industry is pivotal for both the health sector and the national economy. This study aims to identify determinants of national drug products acceptance. The objectives of this study were to quantitatively measure the level of patient and community pharmacist acceptance of national drug products available in community pharmacies and to qualitatively explore the barriers facing national pharmaceutical companies and investigate the suggested solutions.
This cross-sectional study used an explanatory mixed method design. It was conducted in Baghdad, Iraq from July through October 2018. The stud
In this paper, the finite element method is used to study the dynamic behavior of the damaged rotating composite blade. Three dimensional, finite element programs were developed using a nine node laminated shell as a discretization element for the blade structure (the same element type is used for damaged and non-damaged structure). In this analysis the initial stress effect (geometric stiffness) and other rotational effects except the carioles acceleration effect are included. The investigation covers the effect speed of rotation, aspect ratio, skew angle, pre-twist angle, radius to length, layer lamination and fiber orientation of composite blade. After modeling a non-damaged rotating composite blade, the work procedure was to ap
... Show MoreThis study investigates asset returns within the Iraq Stock Exchange by employing both the Fama-MacBeth regression model and the Fama-French three-factor model. The research involves the estimation of cross-sectional regressions wherein model parameters are subject to temporal variation, and the independent variables function as proxies. The dataset comprises information from the first quarter of 2010 to the first quarter of 2024, encompassing 22 publicly listed companies across six industrial sectors. The study explores methodological advancements through the application of the Single Index Model (SIM) and Kernel Weighted Regression (KWR) in both time series and cross-sectional analyses. The SIM outperformed the K
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.