The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabets are detected using the mathematical algorithm of the morphological gradient. After that, the images are passed to the CNN architecture. The available database of Arabic handwritten alphabets on Kaggle is utilized for examining the model. This database consists of 16,800 images divided into two datasets: 13,440 images for training and 3,360 for validation. As a result, the model gives a remarkable accuracy equal to 99.02%.
This study aims to find out the effect of the mediator on scaffolding fourth yearstudent- teachers' teaching competencies and their self-efficacy. The present study combines scaffolding and self-efficacy by using a mediator on scaffolding students affects teaching competencies and selfefficacy and from the results of which the existence of student-teachers’ selfawareness was ensured as an effect of the same independent variable. The model affects their teaching competencies and led them to be aware of the needs of their pupils and themselves.
In the field of civil engineering, the adoption and use of Falling Weight Deflectometers (FWDs) is seen as a response to the ever changing and technology-driven world. Specifically, FWDs refer to devices that aid in evaluating the physical properties of a pavement. This paper has assessed the concepts of data processing, storage, and analysis via FWDs. The device has been found to play an important role in enabling the operators and field practitioners to understand vertical deflection responses upon subjecting pavements to impulse loads. In turn, the resultant data and its analysis outcomes lead to the backcalculation of the state of stiffness, with initial analyses of the deflection bowl occurring in conjunction with the measured or assum
... Show MoreIn this research, the X-ray diffraction pattern was used, which was obtained experimentally after preparation of barium oxide powder. A program was used to analyze the X-ray diffraction lines of barium oxide nanoparticles, and then the particle size was calculated by using the Williamson-Hall method, where it was found that the value of the particle size is 25.356 nm. Also, the dislocation density was calculated, which is equal to1.555 x1015 (lines/nm2), and the value of the unit cell number was also calculated, as it is equal to 23831.
In this paper we use the Markov Switching model to investigate the link between the level of Iraqi inflation and its uncertainty; forth period 1980-2010 we measure inflation uncertainty as the variance of unanticipated inflation. The results ensure there are a negative effect of inflation level on inflation uncertainty and all so there are a positive effect of inflation uncertainty on inflation level.  
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreAt a time when the general rules in the different legal systems require the presence of two parties to the contract, one of which is issued the first expression of the will and is called the offer, and the other is issued from the other and is called the acceptance. A special type of contracts emerged in the beginning of the last century called the “unilateral contracts”. The side sparked a major jurisprudential dispute, as well as the issuance of several contradictory judicial rulings on it. Hence, this research came to highlight this special type of contract. Key words: the definition of a unilateral contract, its distinction from other legal situations, and its effects.
The research demonstrates new species of the games by applying separation axioms via sets, where the relationships between the various species that were specified and the strategy of winning and losing to any one of the players, and their relationship with the concepts of separation axioms via sets have been studied.