Four rapid, accurate and very simple derivative spectrophotometric techniques were developed for the quantitative determination of binary mixtures of estradiol (E2) and progesterone (PRG) formulated as a capsule. Method I is the first derivative zero-crossing technique, derivative amplitudes were detected at the zero-crossing wavelength of 239.27 and 292.51 nm for the quantification of estradiol and 249.19 nm for Progesterone. Method II is ratio subtraction, progesterone was determined at λmax 240 nm after subtraction of interference exerted by estradiol. Method III is modified amplitude subtraction, which was established using derivative spectroscopy and mathematical manipulations. Method IIII is the absorbance ratio technique, absorbance of both medicines was measured at two wavelengths λ1= 260, -absorptive point and λ2=240max of progesterone. The Q equations were used to calculate the final concentrations. The calibration curve is linear from 5.0–140 and 2.0–32.0 µg/ml for estradiol and progesterone respectively. The proposed techniques' selectivity was tested using synthetic combinations created in the lab and assessed using the standard addition method. Using one-way ANOVA, the outputs of the proposed ways were compared, and the result showed no significant differences between the proposed techniques.
Quick and accurate quaternary mixture resolution of furosemide (FURO), carbamazepine (CARB), diazepam (DIAZ) and carvedilol (CARV) by using derivative spectrophotometric method was performed. FURO and CARV were determined by means of first (D1), second (D2), third (D3) and fourth (D4) derivative spectrophotometric methods, CARB was determined by using D1, D2, D3 derivatives, while D1 and D2 were used for the determination of DIAZ. The recommended methods were verified using laboratory prepared mixtures and then successfully applied for the pharmaceutical formulations analysis of the cited drugs. The results obtained revealed the efficiency of the proposed methods as quantitative tool of analysis of the quaternary mixture with no requirement
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the
... Show MoreTwo quantitative, environment-friendly and easily monitored assays for Ni (II) and Co (III) ions analysis in different lipstick samples collected from 500-Iraqi dinars stores located in Baghdad were introduced. The study was based on the reaction of nickel (II) ions with dimethylglyoxime (DMG) reagent and the reaction of cobalt (III) ions with 1-nitroso-2-naphthol (NN) reagent to produce colored products. The color change was measured by spectrophotometric method at 565 nm and 430 nm for Ni and Co, respectively, with linear calibration graphs in the concentration range 0.25-100 mg L-1 (Ni) and 0.5-100 mg L-1 (Co) and LOD and LOQ of 0.11 mg L-1 and 0.36 mg L-1 (Ni), and 0.15 mg L-1 an
... Show MoreShumblan (SH) is one of the most undesirable aquatic plants widespread in the irrigation channels and water bodies. This work focuses on boosting the biogas potential of shumblan by co-digesting it with other types of wastes without employing any chemical or thermal pretreatments as done in previous studies. A maximum biogas recovery of 378 ml/g VS was reached using shumblan with cow manure as inoculum in a ratio of 1:1. The methane content of the biogas was 55%. Based on volatile solid (VS) and C/N ratios, biogas productions of 518, 434, and 580 ml/g VS were obtained when the shumblan was co-digested with food wastes (SH:F), paper wastes (SH:P), and green wastes (SH:G) respectively. No significant changes of methane contents were observ
... Show MoreIt has been shown in ionospheric research that calculation of the total electron content (TEC) is an important factor in global navigation system. In this study, TEC calculation was performed over Baghdad city, Iraq, using a combination of two numerical methods called composite Simpson and composite Trapezoidal methods. TEC was calculated using the line integral of the electron density derived from the International reference ionosphere IRI2012 and NeQuick2 models from 70 to 2000 km above the earth surface. The hour of the day and the day number of the year, R12, were chosen as inputs for the calculation techniques to take into account latitudinal, diurnal and seasonal variation of TEC. The results of latitudinal variation of TE
... Show MoreAbstract
Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model
In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the numbe
... Show MoreTwo methods have been applied for the spectrophotometric determination of atropine, in
bulk sample and in dosage form. The methods are accurate, simple, rapid, inexpensive and
sensitive. The first method depending on the extraction of the formed ion-pair complex with
bromphenol blue (BPB) as a chromogenic reagent in chloroform, use phthalate buffer of pH
3.0; which showed absorbance maxima at 413 nm against reagent blank. The calibration
graph is linear in the ranges of 0.5-40 µg.mL
-1
with detection limit of 0.363µg.mL
-1
. The
second method depending on the measure of the absorbance maxima of the formed charge-transfer complex with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) at 457 nm against
A simple, precise and accurate spectrophotometric method has been developed for simultaneous estimation of sulfanilamide and furosemide in their mixture by using first and second order derivative method in the ultraviolet region. The method depends on first and second derivative spectrophotometry, with zero-crossing and peak to base line and peak area measurements. The first derivative amplitudes at 214, 238 and 266 nm were selected for the assay of sulfanilamide and 240, 260, 284, 314 and 352 nm for furosemide. Peak area at 201222, 222-251 and 251-281 nm selected for estimation of sulfanilamide and at 229-249, 249270, 270-294, 294-333 and 333-382 nm for furosemide. The second derivative amplitudes at 220, 252 and 274 nm for sulfanilamid
... Show MoreThe research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL
Two simple methods spectrophotometric were suggested for the determination of Cefixime (CFX) in pure form and pharmaceutical preparation. The first method is based without cloud point (CPE) on diazotization of the Cefixime drug by sodium nitrite at 5Cº followed by coupling with ortho nitro phenol in basic medium to form orange colour. The product was stabilized and measured 400 nm. Beer’s law was obeyed in the concentration range of (10-160) μg∙mL-1 Sandell’s sensitivity was 0.0888μg∙cm-1, the detection limit was 0.07896μg∙mL-1, and the limit of Quantitation was 0.085389μg∙mL-1.The second method was cloud point extraction (CPE) with using Trtion X-114 as surfactant. Beer
... Show More