In this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.
The present study is meant to inquire about the training needs of middle stage leaders in Bisha, (Saudi Arabia) from the perspective of teachers. To achieve this purpose, the researcher has designed a questionnaire containing (31) items, distributed to a sample of (157) teacher (male and female) from the target population.
This research has demonstrated that the level of training needs for middle stage leaders was moderately reported with an arithmetic mean equivalent to (2.42), and a standard deviation of (0.36). Results have shown no significant differences at (α=0.05) in the sample’s expectations of the study’s variables.
The study concludes with a list of recommendations such as working on developing training pro
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MoreImage Fusion Using A Convolutional Neural Network
With the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases
... Show MoreSpecialized hardware implementations of Artificial Neural Networks (ANNs) can offer faster execution than general-purpose microprocessors by taking advantage of reusable modules, parallel processes and specialized computational components. Modern high-density Field Programmable Gate Arrays (FPGAs) offer the required flexibility and fast design-to-implementation time with the possibility of exploiting highly parallel computations like those required by ANNs in hardware. The bounded width of the data in FPGA ANNs will add an additional error to the result of the output. This paper derives the equations of the additional error value that generate from bounded width of the data and proposed a method to reduce the effect of the error to give
... Show MoreIn this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.
The world faces, in the last years of the last century and the beginning
of the current century i.e. the 21st century, a great expansion and a large
openness on new worlds in studies differ in their development, detection of
thinking methods and practice of mental processes.
The recent studies have proved an increase in the scientific
achievement among students through the presence of new techniques one of
which is Landa Organizing and Exploring Model concerning Physiology that
deals with various body organs.
This research aims at identifying the effectiveness of Landa Model on
the achievement of the Technical Medicine Institute students in Physiology so
as to be sure of the following nil hypothesis: there i