Preferred Language
Articles
/
bsj-7778
Delay differential equation of the 2nd order and it's an oscillation yardstick
...Show More Authors

This study focuses on studying an oscillation of a second-order delay differential equation. Start work, the equation is introduced here with adequate provisions. All the previous is braced by theorems and examplesthat interpret the applicability and the firmness of the acquired provisions

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 31 2015
Journal Name
International Journal Of Advanced Research
On instability of zero solution of some types of forth order
...Show More Authors

The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fourth order by using the Lyapunov-Krasovskii functional approach; we obtain some conditions of instability of solution of such equation.

Publication Date
Mon Jun 01 2015
Journal Name
International J. Of Math. Sci. & Engg. Appls
On instability of zero solution of some types of fifth order
...Show More Authors

The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fifth order with delay by using the Lyapunov-Krasovskii functional approach, we obtain some conditions of instability of solution of such equation.

Publication Date
Fri Jan 01 2016
Journal Name
مجلة المستنصرية للعلوم والتربية
Calculation of Electron Drift Velocity in Xenon Gas Using Boltzmann Equation Analysis
...Show More Authors

Publication Date
Sun Sep 01 2019
Journal Name
Journal Of Physics: Conference Series
Recovery of temporal coefficient for heat equation from non-local overdetermination conditions
...Show More Authors
Abstract<p>Recovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.</p>
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Applying Penman-Monteith Equation to Evaluate the Performance of Atmometer Apparatus in Greenhouse for Estimating Reference Evapotranspiration
...Show More Authors

In this paper an atmometer apparatus were used in the greenhouses for estimating reference evapotranspiration values. Experimental work was conducted in the agriculture research center in the College of Agriculture-University of Baghdad west of the city of Baghdad. One atmometer was used in eggplant greenhouse and in cucumber greenhouse through the winter growing season 2013-2014. FAO Penman-Monteith equation was applied outside the greenhouse and used only 65% from the value of ETo in the greenhouses for estimating the reference evapotranspiration in the greenhouse. Moreover, Penman-Monteith equation was applied in greenhouses for the evaluating the performance of the atmometer. The results show that the erro

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
كلية التربية الجامعة المستنصرية
Study the electron drift velocity in gas mixtures of CF3I with N2 obtained from Boltzmann equation analysis
...Show More Authors

Publication Date
Wed Jan 01 2014
Journal Name
كلية التربية -الجامعة المستنصرية
study the electron drift velocity in gas mixtures of SF6 with N2 obtained from Boltzmann equation analysis
...Show More Authors

Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
Scopus (16)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Tue Jun 04 2019
Journal Name
Jordan Journal Of Biological Sciences
Differential Expression for Genes in Response to Drought and Salinity in Ruta graveolens Plantlets
...Show More Authors

Abiotic stress-induced genes may lead to understand the response of plants and adaptability to salinity and drought stresses. Differential display reverse transcriptase – polymerase chain reaction (DDRT-PCR) was used to investigate the differences in gene expression between drought- and salinity-stressed plantlets of Ruta graveolens. Direct and stepwise exposures to drought- or salt-responsive genes were screened in R. graveolens plantlets using the DDRT technique. Gene expression was investigated both in the control and in the salt or drought-stressed plantlets and differential banding patterns with different molecular sizes were observed using the primers OPA-01 (646,770 and 983 pb), OPA-08 (593 and 988 pb), OPA-11 (674 and 831 pb

... Show More
Preview PDF
Scopus (4)
Scopus
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
View Publication
Crossref (11)
Crossref