This study focuses on studying an oscillation of a second-order delay differential equation. Start work, the equation is introduced here with adequate provisions. All the previous is braced by theorems and examplesthat interpret the applicability and the firmness of the acquired provisions
The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fourth order by using the Lyapunov-Krasovskii functional approach; we obtain some conditions of instability of solution of such equation.
The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fifth order with delay by using the Lyapunov-Krasovskii functional approach, we obtain some conditions of instability of solution of such equation.
Recovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.
In this paper an atmometer apparatus were used in the greenhouses for estimating reference evapotranspiration values. Experimental work was conducted in the agriculture research center in the College of Agriculture-University of Baghdad west of the city of Baghdad. One atmometer was used in eggplant greenhouse and in cucumber greenhouse through the winter growing season 2013-2014. FAO Penman-Monteith equation was applied outside the greenhouse and used only 65% from the value of ETo in the greenhouses for estimating the reference evapotranspiration in the greenhouse. Moreover, Penman-Monteith equation was applied in greenhouses for the evaluating the performance of the atmometer. The results show that the erro
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
Abiotic stress-induced genes may lead to understand the response of plants and adaptability to salinity and drought stresses. Differential display reverse transcriptase – polymerase chain reaction (DDRT-PCR) was used to investigate the differences in gene expression between drought- and salinity-stressed plantlets of Ruta graveolens. Direct and stepwise exposures to drought- or salt-responsive genes were screened in R. graveolens plantlets using the DDRT technique. Gene expression was investigated both in the control and in the salt or drought-stressed plantlets and differential banding patterns with different molecular sizes were observed using the primers OPA-01 (646,770 and 983 pb), OPA-08 (593 and 988 pb), OPA-11 (674 and 831 pb
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using