This study focuses on studying an oscillation of a second-order delay differential equation. Start work, the equation is introduced here with adequate provisions. All the previous is braced by theorems and examplesthat interpret the applicability and the firmness of the acquired provisions
The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.
This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural
... Show MoreThe aim of this study was to provide an overall assessment to the efficiency of the Iraq stocks exchanges (ISE) through specifying well –known models .First, Fama's efficient market hypothesis as a contrary concept to the random walk hypothesis, was performed and it has been found that ISE follows the random process, so the price of the shares can't be predicated on the basis of past information. Second,we use a multifactor model, which so named multiple regression, to explore the link between ISE and the main economic indicators. our empirical analysis finds that every weak associations exists between major ISE measures and main economic indicators.
In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)
A theoretical study was done in this work for Fatigue. Fatigue Crack Growth (FCG) and stress factor intensity range for Ti2 SiC 3 . It also includes Generalized Paris Equation and the Fulfillment of his equation which promise that there is a relation between parameters C and n. Simple Paris Equation was used through which we concluded the practical values of C and n and compared them with the theoretical values which have been concluded by Generalized Paris Equation. The value of da/dN and ∆K for every material and sample were concluded and compared with the data which was used in the computer p
... Show MoreA new technique to study the telegraph equation, mostly familiar as damped wave equation is introduced in this study. This phenomenon is mostly rising in electromagnetic influences and production of electric signals. The proposed technique called as He-Fractional Laplace technique with help of Homotopy perturbation is utilized to found the exact and nearly approximated results of differential model and numerical example of telegraph equation or damped wave equation in this article. The most unique term of this technique is that, there is no worry to find the next iteration by integration in recurrence relation. As fractional Laplace integral transformation has some limitations in non-linear terms, to get the result of nonlinear term in
... Show MoreNonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show More